首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A liquid chromatography-tandem mass spectrometry (LC-MSMS) target screening in 50mg hair was developed and fully validated for 35 analytes (Δ9-tetrahidrocannabinol (THC), morphine, 6-acetylmorphine, codeine, methadone, fentanyl, amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, benzoylecgonine, cocaine, lysergic acid diethylamide, ketamine, scopolamine, alprazolam, bromazepam, clonazepam, diazepam, flunitrazepam, 7-aminoflunitrazepam, lorazepam, lormetazepam, nordiazepam, oxazepam, tetrazepam, triazolam, zolpidem, zopiclone, amitriptyline, citalopram, clomipramine, fluoxetine, paroxetine and venlafaxine). Hair decontamination was performed with dichloromethane, and incubation in 2 mL of acetonitrile at 50°C overnight. Extraction procedure was performed in 2 steps, first liquid-liquid extraction, hexane:ethyl acetate (55:45, v:v) at pH 9, followed by solid-phase extraction (Strata-X cartridges). Chromatographic separation was performed in AtlantisT3 (2.1 mm × 100 mm, 3 μm) column, acetonitrile and ammonium formate pH 3 as mobile phase, and 32 min total run time. One transition per analyte was monitored in MRM mode. To confirm a positive result, a second injection monitoring 2 transitions was performed. The method was specific (no endogenous interferences, n=9); LOD was 0.2-50 pg/mg and LOQ 0.5-100 pg/mg; linearity ranged from 0.5-100 to 2000-20,000 pg/mg; imprecision <15%; analytical recovery 85-115%; extraction efficiency 4.1-85.6%; and process efficiency 2.5-207.7%; 27 analytes showed ion suppression (up to -86.2%), 4 ion enhancement (up to 647.1%), and 4 no matrix effect; compounds showed good stability 24-48 h in autosampler. The method was applied to 17 forensic cases. In conclusion, a sensitive and specific target screening of 35 analytes in 50mg hair, including drugs of abuse (THC, cocaine, opiates, amphetamines) and medicines (benzodiazepines, antidepressants) was developed and validated, achieving lower cut-offs than Society of Hair Testing recommendations.  相似文献   

2.
A method for detection and quantification of 21 benzodiazepines and the pharmacologically related "z-drugs" in human hair samples was developed and fully validated using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). After methanolic and methanolic/aqueous extraction, the analytes were separated using two different LC-MS systems (AB Sciex 3200 QTRAP and AB Sciex 5500 QTRAP). Separation columns, mobile phases and MS modes for both systems were: Phenomenex Kinetex, 2.6 μm, 50/2.1; 5mM ammonium formate buffer pH 3.5/methanol, total flow 0.75 mL/min; electrospray ionization (ESI), multiple reaction monitoring (MRM), information dependent acquisition (IDA), enhanced product ion scan (EPI). The assays were found to be selective for the tested compounds (alprazolam, 7-aminoclonazepam, 7-aminoflunitrazepam, bromazepam, chlordiazepoxide, clonazepam, N-desalkylflurazepam, diazepam, flunitrazepam, flurazepam, alpha-hydroxymidazolam, lorazepam, lormetazepam, midazolam, nitrazepam, nordazepam, oxazepam, phenazepam, prazepam, temazepam, triazolam, zaleplon, zolpidem and zopiclone), all validation criteria were in the required ranges according to international guidelines, except for bromazepam. Matrix effects, and process efficiencies were in the acceptable ranges evaluated using the post-extraction addition approach. Lower limits of quantification were between 0.6 and 16 pg/mg of hair. The LC-MS/MS assay has proven to be applicable for determination of the studied analytes in human hair in numerous authentic cases (n=175).  相似文献   

3.
Lysergic acid diethylamide (LSD) is a potent hallucinogen, active at very low dosage and its determination in body fluids in a forensic context may present some difficulties, even more so in hair. A dedicated liquid chromatography-electrospray-tandem mass spectrometry (LC-ES-MS/MS) assay in hair was used to document the case of a 24-year-old man found dead after a party. Briefly, after a decontamination step, a 50mg sample of the victim's pubic hair was cut into small pieces (<1mm length), and incubated overnight in 3mL of phosphate buffer pH 5 at room temperature. After a liquid-liquid extraction (dichloromethane/ether), the extract was analyzed using a LC-ES-MS/MS method exhibiting a limit of quantification of 0.5pg/mg for LSD. A LSD concentration of 0.66pg/mg of pubic hair was observed. However, this result remains difficult to interpret owing to the concomitant LSD presence in the victim's post mortem blood and urine, the lack of previously reported LSD concentrations in hair, and the absence of data about LSD incorporation and stability in pubic hair.  相似文献   

4.
A rapid and sensitive method using LC-MS/MS triple stage quadrupole for the determination of traces of amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"), 3,4-methylenedioxyethamphetamine (MDEA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in hair, blood and urine has been developed and validated. Chromatography was carried out on an Uptisphere ODB C(18) 5 microm, 2.1 mm x 150 mm column (Interchim, France) with a gradient of acetonitrile and formate 2 mM pH 3.0 buffer. Urine and blood were extracted with Toxitube A (Varian, France). Segmented scalp hair was treated by incubation 15 min at 80 degrees C in NaOH 1M before liquid-liquid extraction with hexane/ethyl acetate (2/1, v/v). The limits of quantification (LOQ) in blood and urine were at 0.1 ng/mL for all analytes. In hair, LOQ was <5 pg/mg for MA, MDMA, MDEA and MBDB, at 14.7 pg/mg for AP and 15.7 pg/mg for MDA. Calibration curves were linear in the range 0.1-50 ng/mL in blood and urine; in the range 5-500 pg/mg for MA, MDMA, MDEA and MBDB, and 20-500 pg/mg for AP and MDA. Inter-day precisions were <13% for all analytes in all matrices. Accuracy was <20% in blood and urine at 1 and 50 ng/mL and <10% in hair at 20 and 250 pg/mg. This method was applied to the determination of MDMA in a forensic case of single administration of ecstasy to a 16-year-old female without her knowledge during a party. She suffered from hyperactivity, sweating and agitation. A first sample of urine was collected a few hours after (T+12h) and tested positive to amphetamines by immunoassay by a clinical laboratory. Blood and urine were sampled for forensic purposes at day 8 (D+8) and scalp hair at day 60 (D+60). No MDMA was detected in blood, but urine and hair were tested positive, respectively at 0.42 ng/mL and at 22 pg/mg in hair only in the segment corresponding to the period of the offence, while no MDA was detectable. This method allows the detection of MDMA up to 8 days in urine after single intake.  相似文献   

5.
A method is described for the identification of five frequently prescribed benzodiazepines (BZD) (clonazepam, diazepam, flunitrazepam, midazolam and oxazepam) in human hair samples by reversed phase HPLC, following on-line simple enrichment and clean-up on a restricted access extraction column. 50mg of powdered hair were incubated (2h at 45 degrees C) after sonication (1h) in 1 ml of the following solution (methanol:ammonia, 97.5/2.5, v/v). The aliquot was centrifuged and the methanolic phase transferred to a conical tube and evaporated under a gentle stream of nitrogen. The residue was reconstituted by adding 100 microl of a mixture of phosphate buffer (20mM, pH=2.2) and acetonitrile (94/6, v/v). A total of 80 microl were injected into the system with the column switching technique. The pre-column or clean-up column was washed with phosphate buffer pH=7.2. The drugs retained on the pre-column were then eluted in the back-flush mode and separated on a C(8) semi micro column, Lichrospher select B, 125 mm x 3 mm. The BZD were determined by a photodiode-array detector at 254 nm, using reference data (retention time and UV spectra) stored in a personal library. The method showed excellent linearity between 0.5 and 20 ng/mg of hair for clonazepam, flunitrazepam and midazolam and between 0.5 and 100 ng/mg of hair for diazepam and oxazepam. Finally, the present method has been applied to a number of forensic cases in our laboratory.  相似文献   

6.
A LC-MS/MS method for the detection of zolpidem in hair was developed to detect this drug after a single dose in possible drug facilitated sexual assaults. To determine the window of detection of zolpidem in both urine and hair, three volunteers received a 10 mg dose. Urine specimens were collected each 12 h for 144 h. Hair was sampled 3-5 weeks after exposure. Hair and urine extracts were separated on a Xterra MS C18 column using a gradient of acetonitrile and formate buffer. For each compound, detection was related to two daughter ions. Zolpidem was detected for up to 60 h in urine with peak concentrations obtained at 12 h. A single exposure to zolpidem was detected in hair at concentrations ranging from 1.8 to 9.8 pg/mg. Hair analysis was applied to two possible criminal cases. In the first case, zolpidem tested positive in the corresponding hair segment at 4.4 pg/mg. In the other case, zolpidem was detected in all the segments analyzed, demonstrating likely previous drug use in addition to recent exposure associated with a positive blood result.  相似文献   

7.
In the present work we assessed chronic exposure of different working population groups of Messara and Sitia districts, Crete, Greece, to common currently used pesticides (diazinon, fenthion, methyl parathion and malathion) and two banned pesticides hexachlorocyclohexane (HCH) and DDT. The study population (211 persons, 110 females and 101 males) was divided to three groups; people working in greenhouses, animal breeders and people working in open cultivations. Methanolic extraction of pulverized hair was used for organophosphate pesticides extraction, followed by liquid-liquid extraction with water-ethyl acetate as a clean up step. The extraction of organochlorine pollutants was performed by acidic hydrolysis of the hair matrix followed by liquid-liquid and solid phase extraction. The levels of the aforementioned pesticides were measured by GC-ECD and gas chromatography-mass spectrometry (GC-MS). The median concentrations of a-HCH, HCB, lindane, opDDE, ppDDE, opDDD, ppDDD + opDDT and ppDDT were determined at 7.2, 2.2, 70.2, 2.7, 5.7, 3.1, 2.6 and 23.2 pg/mg. The median concentration of total HCHs and DDTs detected in the three working groups were: 95.0 and 8.9 pg/mg for the greenhouse workers, 38.2 and 3.3 pg/mg for the animal breeders and 24.1 and 5.2 pg/mg for the open cultivation group. Ten head hair samples were positive for diazinon at a mean concentration of 2.8 pg/mg. Fenthion, methyl parathion and malathion were not detected. Our results demonstrated the ability to assess chronic human past pesticides exposure, offering valuable information to epidemiological clinical studies.  相似文献   

8.
Ethyl glucuronide (EtG) is a minor metabolite of ethanol that can be detected in hair. In some specific situations, head hair can be missing, and therefore, alternative anatomical locations of hair are of interest. In this study, paired hair specimens (head hair and pubic hair) from eight social drinkers were analyzed for EtG. Each sample was decontaminated by two dichloromethane bathes (5 ml) for 2 min. After cutting into small pieces, about 50 mg of hair was incubated in 2 ml water in the presence of 10 ng of EtG-d5, used as internal standard and submitted to ultra-sonication for 2 h. The aqueous phase was extracted by SPE using Oasis MAX columns. The hair extract was separated on an ACQUITY BEH HILIC column using a gradient of acetonitrile and formate buffer. Detection was based on two daughter ions: transitions m/z 221-85 and 75 and m/z 226-75 for EtG and the IS, respectively. This laboratory is using a positive cut-off at 50 pg/mg. All eight head hair specimens were negative for EtG at a limit of quantitation fixed at 10 pg/mg. Surprisingly, EtG was identified at high concentrations in pubic hair, in the range 12-1370 pg/mg. It appears, therefore, that it is not possible to document the drinking status of a subject by simply switching from head hair to pubic hair.  相似文献   

9.
A rapid and sensitive method using LC-MS/MS triple stage quadrupole for the determination of traces of amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”), 3,4-methylenedioxyethamphetamine (MDEA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in hair, blood and urine has been developed and validated. Chromatography was carried out on an Uptisphere ODB C18 5 μm, 2.1 mm × 150 mm column (Interchim, France) with a gradient of acetonitrile and formate 2 mM pH 3.0 buffer. Urine and blood were extracted with Toxitube A® (Varian, France). Segmented scalp hair was treated by incubation 15 min at 80 °C in NaOH 1 M before liquid–liquid extraction with hexane/ethyl acetate (2/1, v/v). The limits of quantification (LOQ) in blood and urine were at 0.1 ng/mL for all analytes. In hair, LOQ was <5 pg/mg for MA, MDMA, MDEA and MBDB, at 14.7 pg/mg for AP and 15.7 pg/mg for MDA. Calibration curves were linear in the range 0.1–50 ng/mL in blood and urine; in the range 5–500 pg/mg for MA, MDMA, MDEA and MBDB, and 20–500 pg/mg for AP and MDA. Inter-day precisions were <13% for all analytes in all matrices. Accuracy was <20% in blood and urine at 1 and 50 ng/mL and <10% in hair at 20 and 250 pg/mg. This method was applied to the determination of MDMA in a forensic case of single administration of ecstasy to a 16-year-old female without her knowledge during a party. She suffered from hyperactivity, sweating and agitation. A first sample of urine was collected a few hours after (T + 12 h) and tested positive to amphetamines by immunoassay by a clinical laboratory. Blood and urine were sampled for forensic purposes at day 8 (D + 8) and scalp hair at day 60 (D + 60). No MDMA was detected in blood, but urine and hair were tested positive, respectively at 0.42 ng/mL and at 22 pg/mg in hair only in the segment corresponding to the period of the offence, while no MDA was detectable. This method allows the detection of MDMA up to 8 days in urine after single intake.  相似文献   

10.
Excluding laboratory mistakes, a false positive hair result can be observed in case of contamination from environmental pollution (external contamination) or after drug incorporation into the hair from the individual body fluids, such as sweat or putrefactive fluid (post mortem artifact). From our 20 years experience of hair testing, it appears that artifact(s) cannot be excluded in some post mortem cases, despite a decontamination procedure. As a consequence, interpretation of the results is a challenge that deserves particular attention. Our strategy will be reviewed in this paper, based on six cases. In all cases, a decontamination procedure with two washes of 5 ml of dichloromethane for 5 min was performed and the last dichloromethane wash was negative for each target drug. From the histories, there was no suspicion of chronic drug use. In all six cases, the concentrations detected were similar along the hair shaft, irrespective of the tested segment. We have considered this as indicative of external contamination and suggested to the forces or the judges that it is not possible to indicate exposure before death. In contrast to smoke, it seems that contamination due to aqueous matrices (sweat, putrefactive fluid, blood) is much more difficult to remove. To explain potential incorporation of 7-aminoflunitrazepam via putrefactive material, the author incubated negative hair strands in blood spiked at 100 ng/ml and stored at +4°C, room temperature and +40 °C for 7, 14 and 28 days. After routine decontamination, 7-aminoflunitrazepam tested positive in hair, irrespective of the incubation temperature, as early as after 7 days (233-401 pg/mg). In all periods, maximum concentrations were observed after incubation at room temperature. The highest concentration (742 pg/mg) was observed after 28 days incubation at room temperature. It is concluded that a standard decontamination procedure is not able to completely remove external contamination in case of post mortem specimens. Homogenous segmental analyses can be probably indicative of external contamination and therefore a single hair result should not be used to discriminate long-term exposure to a drug. Nor should the presence of a metabolite be considered as a discrimination tool, as it can also be present in putrefactive material.  相似文献   

11.
A sensitive GC-MS method for the simultaneous determination of opiates, cocaine, and metabolites in hair at a cut-off level of 0.1 ng/mg was adopted to assess past exposure to these drugs in applicants for driving licenses with a history of drug use. The sampling protocol consisted of collection of one hair (sample A, 5-cm length) and one urine sample. When hair and urine (EMIT Syva, cut-off levels: 0.3 mg/l for opiates, 0.15 mg/l for cocaine, GC-MS confirmation of positives) were both positive or negative the protocol was concluded. In the other cases, the assessment of 'current exposure' to drugs was carried out, in order to avoid seriated random urinalysis, by collecting a second hair sample (sample B) 6 weeks later and analysing the proximal 1-cm segment. Out of the 214 'A' hair samples analyzed, 14 (6.5%) tested positive for morphine and/or 6-acetylmorphine (6AM), and 26 (12%) for cocaine and/or benzoylecgonine (BE), whereas none of the samples tested positive for both drugs. Levels between 0.1 and 1 ng/mg of the single analytes were found in eight out of the 14 morphine-6AM positives (57%) and in 18 out of the 26 cocaine-BE positives (69%). The time course of positive cases showed a progressive decrease of morphine-6AM positives and a corresponding increase of cocaine-BE positives within the study period September 1995-February 1999. No cases with positive urine and negative hair were observed. Among the 40 positive cases, seven (four and three for opiates and cocaine, respectively) were found to be 'currently exposed to drug', four by urinalysis (three and one) and three by analysis of the hair sample B (1 and 2).  相似文献   

12.
In a study of subjects in drug rehabilitation programs, cocaine and cocaine metabolite levels were determined in the hair of 75 subjects who had produced cocaine-positive urine results. The hair was analyzed after being washed with the 3.75 h wash procedure developed by this laboratory. In addition, results of testing 73 non-users are presented, as well as levels of cocaine, benzoylecgonine (BE), cocaethylene, and norcocaine from workplace population samples. The data support a recommendation of reporting as positive a sample with cocaine of 500 pg/mg hair and either a 5% ratio of benzoylecgonine (BE) to cocaine in samples, or the presence of cocaethylene at 50 pg/mg hair, or norcocaine at 50 pg/mg hair for samples < or =2000 pg cocaine/mg hair. For samples with cocaine present at >2000 pg/mg hair, the data indicate that a ratio of 5% BE may be an overly conservative approach. In appropriately washed hair samples, cocaine users can produce hair levels of <5% BE and thus a minimum BE cutoff in lieu of a ratio could be considered.  相似文献   

13.
A 43-year-old man was found dead in a hotel room during a sexual relation with a colleague.He was treated both for cardiovascular disease and for erectile dysfunction with VIAGRA. A pillbox was found in the room with several tablets of verapamil (Isoptine), trimetazidine (Vastarel), yohimbine and bromazepam (Lexomil). A box of VIAGRA 25mg was found in his raincoat and two tablets were missing. His wife declared during the investigation that he was also treated by trinitrine. Autopsy revealed severe coronary artery sclerosis as well as signs of previous myocardial infarctions. Blood, urine, bile, gastric content and hair and representative tissues for histology were collected for toxicological analysis.Sildenafil and yohimbine were screened with liquid chromatography/mass spectrometry (LC/MS) and trinitrine with headspace injection (HS)/GC/MS. Verapamil and trimetazidine were identified and quantified with LC/diode array detection (DAD).Sildenafil was identified in blood, urine, bile and gastric content at 105, 246, 1206 and 754ng/ml, respectively. Hair concentration was 177pg/mg. The desmethyl metabolite was quantified in urine at 143ng/ml. Blood concentrations of verapamil and trimetazidine were measured at 659 and 2133ng/ml, respectively and were above therapeutic ranges. Trinitrine and yohimbine were not identified.These results confirm the absorption of sildenafil, verapamil and trimetazidine before the death and hair analysis indicates the chronic use of sildenafil.To the author's knowledge, this is the first report of a fatal sildenafil-verapamil association, probably by hypotension and cardiac dysrhythmia.  相似文献   

14.
We reported on the death by poisoning of a one-month-old baby that had followed the death of one of her sister (due to cyamemazine overdose). Exhumation of the corpse was done 8 months after burial and revealed the presence of amitriptyline. Parent drug and its metabolite were analysed by HPLC-MS/MS in positive ionisation mode on a C(18) analytical column using a gradient of acetonitrile and 2mM formate buffer at pH=3. Quantification is based on the main ion m/z=233, the common product ion of nortriptyline (MH(+), m/z 264), amitriptyline (MH(+), m/z 278) and nortriptyline D3 used as internal standard (MH(+), m/z 267). Amitriptyline and nortriptyline in the liver were measured at a concentration of 29.8 and 3.6 μg/g, respectively. Hair analyses revealed the presence of amitriptyline and nortriptyline at concentrations of 1811 and 43 pg/mg, respectively, while complementary analyses showed the presence of bromazepam in the hair at a concentration of 740 pg/mg, thus documenting previous administrations. The mother confessed later having used the drinkable form of the pharmaceutical LAROXYL(?) by pouring the content of a 20 ml bottle (at 40 mg/ml) into the feeding-bottle of her child. The milk was sweet but still bitter and following the testimony of a close relative, the whole family helped to feed the crying baby.  相似文献   

15.
The use of a drug to modify a person's behaviour for criminal gain is not a recent phenomenon. However, the recent increase in reports of drug-facilitated crimes (sexual assault, robbery) has caused alarm in the general public. The drugs involved can be difficult to detect due to low dosages or chemical instability. They possess amnesic properties and can be quickly cleared from the body fluids. In these situations, blood or even urine can be of poor interest. This is the reason why this laboratory developed an original approach based on hair testing by LC-MS/MS. Zopiclone (Imovane), due to its short half-life associated with rapid hypnotic activity, is considered as a compound of choice to sedate victims. To document the detection of zopiclone in hair, we first tested specimens obtained from two volunteers who had ingested a single 7.5 mg Imovane tablet, and from repetitive consumers of zopiclone. After pH 8.4 buffer incubation and extraction with methylene chloride/diethyl ether (80/20 (v/v)), hair extracts were separated on a Xterra MS C18 column using a gradient of acetonitrile and formate buffer. Zopiclone and diazepam-d5, used as internal standard, were detected by tandem mass spectrometry. A single exposure to zopiclone was detectable in the first hair segment of two volunteers at concentration of 5.4 and 9.0 pg/mg, respectively. Hair from repetitive consumers tested positive for zopiclone at concentrations of 37 and 66 pg/mg. Hair analysis was applied to two authentic criminal cases. In the first one, zopiclone tested positive in the corresponding hair segment at 4.2 pg/mg, in accordance with a single exposure to the drug. In the other expertise, zopiclone was detected in the two segments analyzed, at 21.3 and 21.5 pg/mg, making unlikely the hypothetical single exposure to zopiclone.  相似文献   

16.
Several bodybuilders, all winners of international competitions, were arrested for trafficking of a number of doping agents including anabolic steroids, ephedrine, beta-adrenergics, human chorionic gonadotropin, antidepressants, and diuretics. In accordance with the recent French law against doping, the judge asked to test seven bodybuilders to identify doping practices. Hair and urine specimens were collected for analysis. After decontamination, a 100 mg hair strand was pulverized in a ball mill, hydrolyzed, extracted, and derivatized to be tested by GC/MS for anabolic steroids, beta-adrenergic compounds, ephedrine, and other doping agents. Urine was analyzed for anabolic steroids and metabolites, beta-adrenergic compounds, ephedrine, and human chorionic gonadotropin, in addition to a broad spectrum screening with GC/MS. The following compounds were detected in urine: ephedrine (29 and 36 ng/mL, n = 2), clenbuterol (0.2 to 0.3 ng/mL, n = 3), norandrosterone (4.7 to 100.7 ng/mL, n = 7), norethiocholanolone (0.9 to 161.8 ng/mL, n = 6), stanozolol (1 to 25.8 ng/mL, n = 4), methenolone (2.5 to 29.7 ng/mL, n = 4), testosterone (3 to 59.6 ng/mL, n = 7), epitestosterone (1 to 20.4 ng/mL, n = 7) and ratio testosterone/epitestosterone >6 for four subjects (18.5 to 59.6). The following drugs were detected in hair: ephedrine (0.67 and 10.70 ng/mg, n = 2), salbutamol (15 to 31 pg/mg, n = 3), clenbuterol (15 to 122 pg/mg, n = 6), nandrolone (1 to 7.5 pg/mg, n = 3), stanozolol (2 to 84 pg/mg, n = 4), methenolone (17 and 34 ng/ml, n = 2), testosterone enanthate (0.6 to 18.8 ng/mg, n = 5), and testosterone cypionate (3.3 to 4.8 ng/mg, n = 2). These results document the doping practice and demonstrate repetitive exposure to anabolic compounds and confirm the value of hair analysis as a complement to urinalysis in the control of doping practice.  相似文献   

17.
Tabernanthe iboga belongs to the Apocynaceae family. In this study, we report the case of a 37-year-old black male working as a security agent in Paris and found dead naked on the beach in Gabon after consumption of iboga. Autopsy revealed a drowning fatality and a myocardial abnormality (myocardial bridging). Samples of blood, urine, bile, gastric content, liver, lungs, vitreous, spleen and hair were taken. Biological fluids were liquid-liquid extracted with saturated NH4Cl pH 9.5 and methylene chloride/isopropanol (95/5, v/v) in presence of clonazepam-d(4), used as internal standard. After decontamination with dichloromethane, hair was cut into small pieces then sonicated for 2h in saturated NH4Cl pH 9.5 before extraction by methylene chloride/isopropanol (95/5, v/v). After evaporation the residues were reconstituted in methanol/ACN/formate buffer pH 3, from which 10 microL were injected into an ODB Uptisphere C(18) column (150 mm x 2.1mm, 5 microm) and eluted with a gradient of acetonitrile and formate buffer delivered at a flow rate of 200 microL/min. A Quantum Ultra triple-quadrupole mass spectrometer was used for analyses. Ionization was achieved using electrospray in the positive ionization mode (ESI). For each compound, detection was related to three daughter ions (ibogaine: m/z 311.4-->122.1, 174.1 and 188.1; noribogaine: m/z 297.4-->122.1, 159.1 and 160.1; clonazepam-d(4): m/z 319.9-->218.1, 245.1 and 274.1). Ibogaine and noribogaine were detected in all autopsy samples. Hair segmentation was not possible as hair was very short and frizzy. Concentrations of 1.2 and 2.5 ng/mg, respectively were detected. Neither other licit or illicit drugs nor alcohol were found. The presence of ibogaine and noribogaine in all autopsy samples was consistent with the recent absorption of Tabernanthe iboga, which was assumed to be responsible of the drowning fatality. The history of exposure, regarding hair analysis, is discussed. LC-MS/MS appears to be the best method for analyzing complex and poorly volatile alkaloids in autopsy samples and particularly in hair, due to the presence of a nitrogen ring and the relatively low concentrations to be measured.  相似文献   

18.
In this study, we investigated the patterns of cannabis users (n=412) according to their sex, age, and the results of urinalysis and hair analysis, and classified the concentrations of THCCOOH in hair into three categories to examine the levels of cannabis use. We also compared the concentrations of THCCOOH in hair root, hair without the hair root and whole hair and examined the relationship among them according to the results of urinalysis. The hair samples were washed, digested with 1ml of 1M NaOH at 85°C for 30min and extracted with 2ml of n-hexane:ethyl acetate (9:1) two times after adding 1ml of 0.1N sodium acetate buffer (pH 4.5) and 200μl of acetic acid. The final mixture was derivatized with 50μl of PFPA and 25μl of PFPOH for 30min at 70°C. The solution was evaporated, and the residue was reconstituted in 40μl of ethyl acetate and transferred to an autosampler vial. One microlitre was injected into the GC/MS/MS-NCI system. The concentrations of THCCOOH ranged from 0.06 to 33.44pg/mg (mean 2.96; median 1.32) in hair from cannabis users who had positive urine results and ranged from 0.05 to 7.24pg/mg (mean 1.35; median 0.37) in hair from cannabis users who had negative urine results. The average concentration of THCCOOH in hair from cannabis users who had positive urine results was higher than that from cannabis users who had negative urine results. Male cannabis users in their forties were predominant. We classified the concentrations of THCCOOH in hair into three groups (low, medium and high), and could use the grouping of THCCOOH in hair as a guide for determining the level of use. The low, medium and high concentration ranges for THCCOOH in hair were 0.05-0.24, 0.25-2.60 and 2.63-33.44pg/mg, respectively. We also investigated 28 hair samples with the root. The highest concentrations of THCCOOH were seen in the hair root from 18 out of the 28 hair samples. The average concentrations of THCCOOH in hair root, hair without hair root and whole hair from cannabis users who had positive urine results were higher than those who had negative urine results.  相似文献   

19.
Long term exposure to organophosphate pesticides can be evaluated by quantitative analysis of their non-specific metabolites in hair matrix. The aim of this study was to determine whether these metabolites can be internally incorporated into the hair of rabbits exposed to diazinon and chlorpyrifos. The influence of dose and dose duration of each pesticide dosage were investigated. Three groups of rabbits were exposed to different dosages of diazinon (3.0 and 6.0mg/kg/day) and chlorpyrifos (18.0mg/kg/day) via drinking water. Hair samples were collected every month and analyzed for diethyl phosphate (DEP) and diethyl thiophosphate (DETP) by gas chromatography-mass spectrometry (GC-MS). The mean concentrations of the low-dose treated group, ranged from 112 to 257pg/mg for DEP and from 295 to 515pg/mg for DETP in hair. The high-dose treated group demonstrated a range of mean concentrations from 142 to 585pg/mg for DEP and from 406 to 988pg/mg for DETP in hair. For the chlorpyrifos treated group, the concentrations ranged from 138 to 1070 for DEP and from 554 to 886pg/mg for DETP. Analysis revealed the incorporation of these metabolites into the rabbit hair in a dosage and dose duration-dependent manner. These data confirms the ability of using hair analysis for diethyl phosphates to assess long-term OP exposure.  相似文献   

20.
A solid-phase enzyme immunoassay involving microtiter plates was recently proposed by International Diagnostic Systems corporation (IDS) to screen for buprenorphine in human serum. The performance of the kit led us to investigate its applicability in other biological matrices such as urine or blood, and also hair specimens. Low concentrations of buprenorphine were detected with the ELISA test and confirmed by HPLC/MS (buprenorphine concentrations measured by HPLC/MS: 0.3 ng/mL in urine, 0.2 ng/mL in blood, and 40 pg/mg in hair). The intra-assay precision values were 8.7% at 1 ng/mL of urine (n = 8), 11.5% at 2 ng/mL in serum (n = 8), and 11.5% at 250 pg/mg of hair (n = 8), respectively. The immunoassay had no cross-reactivity with dihydrocodeine, ethylmorphine, 6-monoacetylmorphine, pholcodine, propoxyphene, dextromoramide, dextrometorphan at 1 and 10 mg/L, or codeine, morphine, methadone, and its metabolite EDDP. A 1% cross-reactivity was measured for a norbuprenorphine concentration of 50 ng/mL. Finally, the immunoassay was validated by comparing authentic specimens results with those of a validated HPLC/MS method. From the 136 urine samples tested, 93 were positive (68.4%) after the ELISA screening test (cutoff: 0.5 ng/mL) and confirmed by HPLC/MS (buprenorphine concentrations: 0.3-2036 ng/mL). From the 108 blood or serum samples screened, 27 were positive (25%) after the ELISA test with a cutoff value of 0.5 ng/mL (buprenorphine concentrations: 0.2-13.3 ng/mL). Eighteen hair specimens were positive (72%) after the screening (cutoff: 10 pg/mg) and confirmed by LC/MS (buprenorphine concentrations: 40-360 pg/mg). The ELISA method produced false positive results in less than 21% of the cases, but no false negative results were observed with the immunological test. Four potential adulterants (hypochloride 50 mL/L, sodium nitrite 50 g/L, liquid soap 50 mL/L, and sodium chloride 50 g/L) that were added to 10 positive urine specimens (buprenorphine concentrations in the range 5.3-15.6 ng/mL), did not cause a false negative response by the immunoassay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号