首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Fire debris evidence is collected and stored in a wide range of containers, including various polymer bags. Four different polymer bags have been investigated, including the NYLON, DUO, ALU, and AMPAC bags. The latter is the successor of the Kapak Fire DebrisPAK?. Microscopy and infrared spectroscopy were used to elucidate the composition of the bags. Gas chromatography/mass spectrometry was used to investigate performance parameters such as background volatiles, leak rate, cross‐contamination, recovery, and sorption. The NYLON bag was susceptible for leakage and cross‐contamination and showed decreased recoveries. The DUO and ALU bags showed some background volatiles, sorption, and poor recoveries. The AMPAC bag performed excellent: low background, no leakage or cross‐contamination, good recoveries, and only traces of sorption. Heat sealing proved to be the best method of closure. Preliminary studies on AMPAC bags showed that polyethylene clamps are easy to use on‐site and preserve ignitable liquids adequately for a limited period of time.  相似文献   

2.
Solid-phase microextraction (SPME) is well documented with respect to its convenience and applicability to sampling volatiles. Nonetheless, fire debris analysts have yet to widely adopt SPME as a viable extraction technique, although several fire debris studies have demonstrated the utility of SPME coupled with gas chromatography-mass spectrometry (GC-MS) to identify ignitable liquids. This work considers the expansion of SPME sampling from the customary thermal desorption mode to solvent-based analyte desorption for the analysis of ignitable residues. SPME extraction fibers are desorbed in 30 microL of nonaqueous solvent to yield a solution amenable to conventional GC-MS analysis with standard autosampler apparatus. This approach retains the advantages of convenience and sampling time associated with thermal desorption while simultaneously improving the flexibility and throughput of the method. Based on sampling results for three ignitable liquids (gasoline, kerosene, anddiesel fuel) in direct comparisons with the widely used activated charcoal strip (ACS) method this methodology appears to be a viable alternative to the routinely used ACS method.  相似文献   

3.
Alternative fuels are becoming more prominent on the market today and, soon, fire debris analysts will start seeing them in liquid samples or in fire debris samples. Biodiesel fuel is one of the most common alternative fuels and is now readily available in many parts of the United States and around the world. This article introduces biodiesel to fire debris analysts. Biodiesel fuel is manufactured from vegetable oils and/or animal oils/fats. It is composed of fatty acid methyl esters (FAMEs) and is sold pure or as a blend with diesel fuel. When present in fire debris samples, it is recommended to extract the debris using passive headspace concentration on activated charcoal, possibly followed by a solvent extraction. The gas chromatographic analysis of the extract is first carried out with the same program as for regular ignitable liquid residues, and second with a program adapted to the analysis of FAMEs.  相似文献   

4.
Clear plastic bags are often used for the collection, sampling and storage of ignitable liquid evidence. They are popular because they are easy to store. transport and are inexpensive. Cryovac and Globus brand polyethylene/polyvinylidine dichloride bags were tested for suitability in storing ignitable liquid evidence. Standards of diesel, kerosene and gasoline were placed in the bags and sampled by passive headspace adsorption. The bags were then heated to determine if absorbed components of the standards could be released upon heating. Recovered extracts were analyzed by GC and GCMS. These bags were found to absorb components of diesel, kerosene, and gasoline. and were also found to produce interfering by-products that obstruct the chromatographic results. Evidence containers need to be tested to ensure that low levels of ignitable liquids are not missed.  相似文献   

5.
Distortion of the chromatographic profile obtained for hydrocarbons that have been sampled by adsorption onto activated charcoal is a well-known phenomenon. The work reported here helps to better define the causes of chromatographic profile distortion and offers a potential method to avoid chromatographic distortion in some cases through a subsampling technique. The recovery of hydrocarbons from an equimolar mixture was investigated to determine the influence of hydrocarbon concentration on the molar ratios of recovered components. In a one-quart container, hydrocarbon volumes as small as 24 microL (liquid) were sufficient to saturate the surface area available for adsorption on a 99.0 mm2 square of activated charcoal, resulting in significant distortions in the molar ratio and the chromatographic profile of the recovered hydrocarbons. Passive headspace sampling of a similarly small volume of unweathered gasoline spiked onto carpet padding resulted in a significant distortion of the chromatographic profile. The chromatographic profile of the recovered hydrocarbons closely resembled 75% weathered gasoline. Heating the container spiked with unweathered gasoline to evenly distribute the components and then removing a subsample of the carpet padding to a second container for passive headspace analysis greatly reduced the amount of distortion in the resulting chromatogram.  相似文献   

6.
A solid-phase microextraction (SPME) procedure involving direct contact between the SPME fibers and the solid matrix and subsequent gas chromatography/mass spectrometric analysis for the detection of accelerants in fire debris is described. The extraction performances of six fibers (100 mum polydimethylsiloxane, 65 mum polydimethylsiloxane-divinylbenzene, 85 mum polyacrylate, 85 mum carboxen-polydimethylsiloxane, 70 mum Carbowax-divinylbenzene, and 50/30 mum divinylbenzene-Carboxen-polydimethylsiloxane) were investigated by directly immersing the fibers into gasoline, kerosene, and diesel fuel. For simulated fire debris, in the direct contact extraction method, the SPME fiber was kept in contact with the fire debris matrix during extraction by penetrating plastic bags wrapping the sample. This method gave comparable results to the headspace SPME method in the extraction of gasoline and kerosene, and gave an improved recovery of low-volatile components in the extraction of diesel fuel from fire debris. The results demonstrate that this procedure is suitable as a simple and rapid screening method for detecting ignitable liquids in fire debris packed in plastic bags.  相似文献   

7.
The application of comprehensive two-dimensional gas chromatography (GC x GC) for the forensic analysis of ignitable liquids in fire debris is reported. GC x GC is a high resolution, multidimensional gas chromatographic method in which each component of a complex mixture is subjected to two independent chromatographic separations. The high resolving power of GC x GC can separate hundreds of chemical components from a complex fire debris extract. The GC x GC chromatogram is a multicolor plot of two-dimensional retention time and detector signal intensity that is well suited for rapid identification and fingerprinting of ignitable liquids. GC x GC chromatograms were used to identify and classify ignitable liquids, detect minor differences between similar ignitable liquids, track the chemical changes associated with weathering, characterize the chemical composition of fire debris pyrolysates, and detect weathered ignitable liquids against a background of fire debris pyrolysates.  相似文献   

8.
Abstract: In fire debris analysis, weathering of ignitable liquids and matrix interferences can make the identification of ignitable liquid residues (ILRs) difficult. An objective method was developed to associate ILRs with the corresponding neat liquid with discrimination from matrix interferences using principal components analysis (PCA) and Pearson product moment correlation (PPMC) coefficients. Six ignitable liquids (gasoline, diesel, ultra pure paraffin lamp oil, adhesive remover, torch fuel, paint thinner) were spiked onto carpet, which was burned, then extracted using passive headspace extraction, and analyzed by gas chromatography‐mass spectrometry. Both light and heavy burn conditions were investigated. In the PCA scores plot, ignitable liquids were discriminated based on alkane and aromatic content. All ILRs were successfully associated with the corresponding neat liquid using both PCA and PPMC coefficients, regardless of the extent of burning. The method developed in this research may make the association of ILRs with corresponding neat liquids more objective.  相似文献   

9.
The chemical analysis of fire debris represents a crucial part in fire investigations to determine the cause of a fire. A headspace solid‐phase microextraction (HS‐SPME) procedure for the detection of ignitable liquids in fire debris using a fiber coated with a mixture of three different sorbent materials (Divinylbenzene/Carboxen/Polydimethylsiloxane, DVB/CAR/PDMS) is described. Gasoline and diesel fuel were spiked upon a preburnt matrix (wood charcoal), extracted and concentrated with HS‐SPME and then analyzed with gas chromatography/mass spectrometry (GC/MS). The experimental conditions—extraction temperature, incubation and exposure time—were optimized. To assess the applicability of the method, fire debris samples were prepared in the smoke density chamber (SDC) and a controlled‐atmosphere cone calorimeter. The developed methods were successfully applied to burnt particleboard and carpet samples. The results demonstrate that the procedure that has been developed here is suitable for detecting these ignitable liquids in highly burnt debris.  相似文献   

10.
A multistep classification scheme was used to detect and classify ignitable liquid residues in fire debris into the classes defined by the ASTM E1618‐10 standard method. The total ion spectra (TIS) of the samples were classified by soft independent modeling of class analogy (SIMCA) with cross‐validation and tested on fire debris. For detection of ignitable liquid residue, the true‐positive rate was 94.2% for cross‐validation and 79.1% for fire debris, with false‐positive rates of 5.1% and 8.9%, respectively. Evaluation of SIMCA classifications for fire debris relative to a reviewer's examination led to an increase in the true‐positive rate to 95.1%; however, the false‐positive rate also increased to 15.0%. The correct classification rates for assigning ignitable liquid residues into ASTM E1618‐10 classes were generally in the range of 80–90%, with the exception of gasoline samples, which were incorrectly classified as aromatic solvents following evaporative weathering in fire debris.  相似文献   

11.
Nylon bags are used for packaging fire debris in several countries, particularly in Europe. The possibility of cross‐contamination during transport from the fire scene to the laboratory, in normal casework conditions in the U.K., was studied for two brands of nylon bags, using simulated heavy‐loaded fire debris. Three experiments were carried out with each brand, using as sample a piece of cotton fabric soaked with gasoline. One experiment was carried out using automotive paint thinner (oxygenated solvent). Each sample was sealed in a nylon bag and stored in contact with eight empty bags. The empty bags were analysed at regular intervals for a period of time up to 8 weeks, using SPME and GC/MS. Cross‐contamination was found for components of gasoline (toluene and C2‐alkylbenzenes) in the two brands of nylon bags used, after 4 days and 2 weeks. Cross‐contamination using automotive topcoat thinner was detected after 2 days.  相似文献   

12.
Principal components analysis (PCA), linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA) were used to develop a multistep classification procedure for determining the presence of ignitable liquid residue in fire debris and assigning any ignitable liquid residue present into the classes defined under the American Society for Testing and Materials (ASTM) E 1618‐10 standard method. A multistep classification procedure was tested by cross‐validation based on model data sets comprised of the time‐averaged mass spectra (also referred to as total ion spectra) of commercial ignitable liquids and pyrolysis products from common building materials and household furnishings (referred to simply as substrates). Fire debris samples from laboratory‐scale and field test burns were also used to test the model. The optimal model's true‐positive rate was 81.3% for cross‐validation samples and 70.9% for fire debris samples. The false‐positive rate was 9.9% for cross‐validation samples and 8.9% for fire debris samples.  相似文献   

13.
Identification of an ignitable liquid in fire debris evidence can be complicated due to evaporation of the liquid, matrix interferences, and thermal degradation of both the liquid and the matrix. In this research, liquids extracted from simulated fire debris were compared to the original liquid using multivariate statistical procedures. Neat and evaporated gasoline and kerosene standards were spiked onto nylon carpet, which was subsequently burned. The ignitable liquid residues were extracted using a passive headspace procedure and analyzed by gas chromatography-mass spectrometry. Pearson product moment correlation coefficients, hierarchical cluster analysis, and principal components analysis were used to compare the liquids extracted from the carpet to the corresponding neat liquid. For each procedure, association of the extracts according to liquid type was possible, albeit not necessarily to the specific evaporation level. Of the three procedures investigated, principal components analysis offered the most promise since contributions from matrix interferences were essentially eliminated.  相似文献   

14.
The effects of a Micelle Encapsulator Fire Suppression Agent (F-500, Hazard Control Technologies Inc., Fayetteville, Georgia) on the routine analysis of fire debris samples by Gas Chromatography (GC) were studied. When mixed with water the product can be used in the suppression of Class A and Class B fires. Laboratory tests were performed to determine whether or not the product has any effect on the analysis for ignitable liquids by GC, in particular for gasoline, medium petroleum distillates. and heavy petroleum distillates. Test burns were suppressed using either the micelle encapsulator or water and samples collected from these burns were analyzed. The results of analysis show that use of the micelle encapsulator at a fire scene may affect the chromatographic data obtained from samples collected by the investigator. However, the effect does not prevent the identification of common ignitable liquids in fire debris samples.  相似文献   

15.
Abstract: In this case report, potential interferences from an improvised fire‐extinguishing agent, a dishwashing liquid, containing linear alkylbenzene sulfonates (LAS), was studied. The presence of linear alkylbenzenes (LABs) in the fire debris sample was identified from the summed ion profile (SIP) analysis. It was found that the LAS from dishwashing liquids produce LABs by thermal degradation. Direct pyrolysis of a LAS‐containing dishwashing liquid at 300°C yielded a distribution of LABs in the SIP. LABs began to break down at pyrolysis temperatures between 450 and 500°C and completely break down by 800°C. Observed pyrolysis breakdown products of LABs included toluene, ethylbenzene, meta‐, para‐, and ortho‐xylenes, propylbenzene, indane, naphthalene, and 1‐ and 2‐methylnaphthalenes. These data suggested the presence of LABs in fire debris evidence might complicate subsequent analysis because their breakdown products contained some of the target compounds common to ignitable liquid identification. Therefore, a positive determination of the presence of foreign ignitable liquids should be carefully evaluated when there is a presence of LABs in the SIP.  相似文献   

16.
Tests have determined that boots or shoes of individuals at a fire scene do not transport sufficient contaminants ("tracking") through the fire scene to produce a positive laboratory result for the presence of gasoline in a fire scene that was not present at the time of the fire. Questions about the validity of forensic laboratory results have been raised on the basis that low-level gasoline residues detected in the laboratory samples could have been the result of transporting the residue by footwear contaminated from the fire scene ("tracking"). The data collected in this study establish that "tracking" does not lead to false-positive laboratory results. Canines trained and experienced in the detection of trace ignitable liquid residues were also utilized in this study. The canine results confirmed that properly trained canines show a higher sensitivity than do standard ASTM laboratory techniques for fire debris analysis. In a few cases, canines responded to contamination, but laboratory testing (which is the definitive indicator) did not produce positive results.  相似文献   

17.
ABSTRACT: Ignitable Liquid Absorbent (ILA), a commercial solid absorbent intended to assist fire scene investigators in sample location and collection, has been field tested in three separate room fires. The ability of the ILA to detect and absorb different amounts of gasoline, odorless paint thinner, and camp fuel on two different substrates after a full-scale burn was assessed against results from an accelerant detection canine and laboratory analysis using gas chromatography-mass spectrometry (GC-MS). The canine correctly alerted on most of the panels that contained an ignitable liquid after the fire, while the ILA indicator dye failed to indicate in the presence of gasoline and camp fuel. GC-MS results for ignitable liquid residue from each panel and from the ILA showed that ILA absorbed odorless paint thinner and camp fuel from most of the test panels, but failed to absorb gasoline from the panels on which gasoline was confirmed to be present.  相似文献   

18.
Gas chromatography–mass spectrometry (GC–MS) data of ignitable liquids in the Ignitable Liquids Reference Collection (ILRC) database were processed to obtain 445 total ion spectra (TIS), that is, average mass spectra across the chromatographic profile. Hierarchical cluster analysis, an unsupervised learning technique, was applied to find features useful for classification of ignitable liquids. A combination of the correlation distance and average linkage was utilized for grouping ignitable liquids with similar chemical composition. This study evaluated whether hierarchical cluster analysis of the TIS would cluster together ignitable liquids of the same ASTM class assignment, as designated in the ILRC database. The ignitable liquids clustered based on their chemical composition, and the ignitable liquids within each cluster were predominantly from one ASTM E1618‐11 class. These results reinforce use of the TIS as a tool to aid in forensic fire debris analysis.  相似文献   

19.
Contamination of canine training aids is a pervasive issue that may lead to incorrect canine discrimination of target odors. It is therefore important to properly store training materials to maintain their integrity and efficiency. First, this study demonstrated the potential for contamination using GloGerm™ as a proxy for odor/particulate transfer. Then, eight types of containers were evaluated to determine (1) the ability to prevent odor permeation and (2) the likelihood of maintaining the ab/adsorbed odor. Lastly, a longitudinal study evaluated how the permeation of the target odor changed over time. Analysis occurred using a direct analysis in real-time mass spectrometer (DART-MS) to detect triacetone triperoxide (TATP) from the non-hazardous canine training aid known as the polymer odor capture-and-release (POCR) system. Results showed that Mylar and Opsak bags were most effective for short-term storage, maintaining low levels of ab/adsorption. Over time, the amount of TATP permeating through the primary containers and collecting in a secondary container (i.e., outer packaging) increased at 1 week and decreased thereafter (up to 4 months). The amount of TATP collecting in the primary containers, however, increased up to 1 month and decreased thereafter.  相似文献   

20.
The recent National Academy of Sciences report on forensic sciences states that the study of fire patterns and debris in arson fires is in need of additional work and eventual standardization. We discuss a recently introduced method that can provide predicted evaporation patterns for ignitable liquids as a function of temperature. The method is a complex fluid analysis protocol, the advanced distillation curve approach, featuring a composition explicit data channel for each distillate fraction (for qualitative, quantitative, and trace analysis), low uncertainty temperature measurements that are thermodynamic state points that can be modeled with an equation of state, consistency with a century of historical data, and an assessment of the energy content of each distillate fraction. We discuss the application of the method to kerosenes and gasolines and outline how expansion of the scope of fluids to other ignitable liquids can benefit the criminalist in the analysis of fire debris for arson.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号