首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Fire investigation is a challenging area for the forensic investigator. The aim of this work was to use spectral changes to paint samples to estimate the temperatures to which a paint has been heated. Five paint samples (one clay paint, two car paints, one metallic paint, and one matt emulsion) have been fully characterized by a combination of attenuated total reflectance Fourier transform infrared (ATR‐IR), Raman, X‐ray fluorescence spectroscopy and powder X‐ray diffraction. The thermal decomposition of these paints has been investigated by means of ATR‐IR and thermal gravimetric analysis. Clear temperature markers are observed in the ATR‐IR spectra namely: loss of ν(C = O) band, >300°C; appearance of water bands on cooling, >500°C; alterations to ν(Si–O) bands due to dehydration of silicate clays, >700°C; diminution of ν(CO3) and δ(CO3) modes of CaCO3, >950°C. We suggest the possible use of portable ATR‐IR for nondestructive, in situ analysis of paints.  相似文献   

2.
Chrome Yellow (PbCrO4·xPbSO4) was a common pigment in U.S. automobile OEM finishes for more than three decades, but in the early 1990s its use was discontinued. One of its main replacements was Bismuth Vanadate (BiVO4·nBi2MoO6, = 0–2), which was commercially introduced in 1985, as this inorganic pigment also produces a very bright hue and has excellent outdoor durability. This paper describes the in situ identification of Bismuth Vanadate in automotive finishes using FT‐IR and dispersive Raman spectroscopy and XRF spectrometry. Some differentiation of commercial formulations of this pigment is possible based on far‐infrared absorptions, Raman data, and elemental analysis. The spectral differences arise from the presence or absence of molybdenum, the use of two crystal polymorphs of BiVO4, and differences in pigment stabilizers. Bismuth Vanadate is usually not used alone, and it is typically found with Isoindoline Yellow, hydrous ferric oxide, rutile, Isoindolinone Yellow 3R, or various combinations of these.  相似文献   

3.
This work evaluates cocaine purity and the concentration ranges of adulterants and inorganic constituents for 31 street cocaine samples seized in two different regions of Brazil from July 2008 to May 2010. Cocaine and adulterants, such as caffeine, lidocaine and benzocaine, were quantified by Gas chromatography–mass spectrometry (GC–MS), and the inorganic constituents were determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and ion chromatography (IC). The cocaine concentrations in the samples seized in the Amazonas state (AM samples) ranged from 154 to 978 mg g? 1, and these samples did not contain any of the adulterants studied. The cocaine concentrations in the samples seized in the Minas Gerais state (MG samples) ranged from 63.9 to 753 mg g? 1. Caffeine was the main adulterant found in 76% of the MG samples, ranging in concentration from 5.5 to 645.3 mg g? 1. Lidocaine was found in 66.7% of the MG samples, with concentrations ranging from 16.3 to 576.7 mg g? 1. Benzocaine was found in only one MG sample, at a concentration of 84.8 mg g? 1. Fourteen elements were identified by ICP-OES, and a wide variation was observed in the concentrations of Ca, Mg, Na, P, Al, Fe, Mn and Zn. Pearson Product–moment Correlations between the analytes allowed the constituents to be associated with the chemicals used in the manufacturing of cocaine and with some common diluents. The study of the purity of cocaine and the presence and concentration of adulterants and inorganic constituents is important because the latter can have deleterious effects on health.  相似文献   

4.
Micro‐Raman spectroscopy was applied to forensic identification of pigments in paint chips and provided differentiation between paint samples. Sixty‐six blue automotive paint samples, 26 solid and 40 metallic were examined. It was found that the majority of the collected Raman spectra provided information about the pigments present. However, in some cases, fluorescence precluded pigment identification. Using laser excitation at longer wavelengths or pretreatment to effect photobleaching often resulted in reduced fluorescence, particularly for solid color samples, and allowed pigment identification. The examined samples were compared pairwise taking into account number, location, and intensity of absorption bands in their infrared spectra. The estimated discrimination power ranged from 97% for solid paint samples to 99% for metallic paint samples.  相似文献   

5.
In this study, the Raman spectra of 21 phenethylamines were obtained using far‐red excitation (785 nm). The distinguishing ability of Raman for phenethylamines, especially for phenethylamine regioisomers and structural analogues, was investigated. Here, the evaluation of a cross section of Raman spectra demonstrated that all types of phenethylamines were distinguishable, even for certain structural analogues with high spectrum similarity. Raman exhibited high distinguishing ability for phenethylamine regioisomers that differ in the substitution position of halogen, methoxy, alkyl, or other substituted groups; as well as for structural analogues containing different groups, such as furanyl, 2,3‐dihydrofuranyl, halogen, and alkyl substituted at the same position. The Raman spectra for homologues with differences in only a methyl group were found to be highly similar; however, their spectra demonstrated small but detectable differences. Four analogue mixtures and 59 seized samples were also analyzed to study the practical use of the Raman method in forensic field. 95% of the seized samples were correctly identified, which significantly validated the ability of Raman method in identifying the correct isomers. Accordingly, this study provides a non‐destructive, high‐throughput and minimal sample preparation technique for the discrimination of phenethylamines.  相似文献   

6.
目的研究常见纺用单根无色纤维的有效鉴别方法。方法使用显微红外光谱仪、显微激光拉曼光谱仪研究7大类纺用单根无色纤维的分子光谱。结果显微红外光谱仪、显微激光拉曼光谱仪能有效区分包括棉、粘胶、羊毛、丝、聚酰胺、聚丙烯腈和聚酯在内的7种纤维,是检测单根纤维的有效手段。785nm激发光源是显微激光拉曼光谱仪研究这7类纤维的最佳波长。但由于纺用纤维生产过程的标准化,仅依据红外或者拉曼的峰位置区分同种类、不同产地纤维的效果一般。结论显微红外光谱仪、显微激光拉曼光谱仪是鉴别常见纺用单根无色纤维的有效方法。  相似文献   

7.
Crime scene investigators and laboratory analysts use chemical tests to detect and differentiate body fluids. Testing often requires a sample of the stain, and the chemicals may cause degradation of the fluid or interfere with subsequent tests. Colorimetric chemical tests do not differentiate between different types of the same fluid, such as venous and menstrual blood, and there is no presumptive test available to simultaneously differentiate several body fluids. In this study, we recorded ATR FT ‐IR spectra of venous and menstrual blood, semen, saliva, and breastmilk. Neat and simulated casework body fluid samples were analyzed on cotton, nylon, wood, paper, and glass substrates. Differences in fluid composition, including proteins and small molecules, resulted in spectral differences. Venous and menstrual blood is differentiated by the peak at 1039 cm?1 attributed to phosphoric acid found in menstrual blood. Peak intensity is influenced by the porosity and weave of the substrate fabric.  相似文献   

8.
In the present study, we used micro‐Raman spectroscopy with high‐resolution analysis to discriminate between bloodstains from infants and bloodstains from adults. Raman peaks were detected at 674, 754, 976, 1002, 1105, 1127, 1176, 1248, 1340, 1368, 1390, 1560, and 1611 cm?1; these peaks were derived from hemoglobin, albumin, and glucose. However, a peak was obtained at 1105 cm?1, which was assigned to histidine; this peak was observed only for bloodstains from adults. Human adult hemoglobin (HbA) is composed of an α2β2 tetramer structure, whereas human fetal hemoglobin (HbF) is composed of an α2γ2. Therefore, the lack of a Raman peak at 1105 cm?1 in bloodstains from infants indicates the possibility of two histidine substitutions (His116Ile and His143Ser) in the γ chain of HbF. This study discriminates between bloodstains from infants and bloodstains from adults using micro‐Raman spectroscopy, with beneficial implications in forensic science.  相似文献   

9.
A Raman spectroscopy method for determining the drug content of street samples of amphetamine was developed by dissolving samples in an acidic solution containing an internal standard (sodium dihydrogen phosphate). The Raman spectra of the samples were measured with a CDD-Raman spectrometer. Two Raman quantification methods were used: (1) relative peak heights of characteristic signals of the amphetamine and the internal standard; and (2) multivariate calibration by partial least squares (PLS) based on second derivative of the spectra. For the determination of the peak height ratio, the spectra were baseline corrected and the peak height ratio (h(amphetamine at 994 cm(-1) )/h(internal standard at 880 cm(-1) )) was calculated. For the PLS analysis, the wave number interval of 1300-630 cm(-1) (348 data points) was chosen. No manual baseline correction was performed, but the spectra were differentiated twice to obtain their second derivatives, which were further analyzed. The Raman results were well in line with validated reference LC results when the Raman samples were analyzed within 2 h after dissolution. The present results clearly show that Raman spectroscopy is a good tool for rapid (acquisition time 1 min) and accurate quantitative analysis of street samples that contain illicit drugs and unknown adulterants and impurities.  相似文献   

10.
The treatment of corpses with extremely acid or basic liquids is sometimes performed in criminal contexts. A thorough characterization by chemical analysis may provide further help to macroscopic and microscopic analysis; 63 porcine bone samples were treated with solutions at different pH (1–14) for immersion periods up to 70 days, as well as in extremely acidic sulfuric acid solutions (9 M/18 M) and extremely basic sodium hydroxide. Inductively coupled optical emission spectrometry (ICP‐OES)/plasma mass spectrometry (ICP‐MS), Fourier transform infrared spectroscopy (FT‐IR), energy dispersive X‐ray analysis (EDX), X‐ray powder diffraction (XRPD), and scanning electron microscopy (SEM) showed that only the sulfuric acid solution 18 M was able to completely dissolve the sample. In addition, chemical analysis allowed to recognize the contact between bone and substances. Hydrated calcium sulfate arose from extreme pH. The possibility of detecting the presence of human material within the residual solution was demonstrated, especially with FT‐IR, ICP‐OES, and EDX.  相似文献   

11.
《Science & justice》2022,62(1):60-75
Cocaine is one of the most widely used illicit drugs worldwide. Cocaine powders seized by the Police may contain numerous other substances besides the drug itself. These can be impurities originating from the coca plant or the production process, or be purposely added to the drug formulation as adulterants and cutting agents. In forensic laboratories, identification of cocaine is routinely done through GC-MS analysis, but other components are often ignored even if the method allows for their detection. Yet, they can provide valuable insight into the history of a seizure and its potential connection to other samples. To explore this idea, an extensive review of common impurities and adulterants encountered in cocaine is presented. Based on their incidence, concentration in the end product and compatibility with GC-MS methods, their overall usefulness as candidates for the statistical investigation of existing forensic data is evaluated. The impurities cis- and trans-cinnamoylcocaine, tropacocaine, norcocaine and N-benzoylnormethylecgonine as well as the adulterants lidocaine, procaine, tetracaine, benzocaine, caffeine, acetylsalicylic acid, phenacetin, ibuprofen, levamisole, hydroxyzine and diltiazem are promising candidates to provide additional forensic intelligence. Future research on optimized routine GC-MS methods, signal reproducibility, comparison, statistics and databases is suggested to facilitate this concept. Ultimately, such an approach may significantly advance the amount of information that is extracted from routine casework data, elucidate developments in the cocaine markets in the past and facilitate Police work in the future. Preliminary assessment of existing data from the forensic laboratory of the Amsterdam Police has been included to show that the detection of the identified target impurities is feasible, and that small adjustments to the analysis method could significantly increase the detectability of these analytes in prospective drug screenings. Forensic intelligence based on retrospective data mining of cocaine containing casework samples may thus be realized with minimal additional laboratory efforts by using already available instrumentation, samples and data.  相似文献   

12.
A 20‐year‐old man, a cocaine addict and regular ecstasy user, with a medical history of allergic asthma died after ingesting half a tablet earlier the same day. The white tablet, stamped with a “smiling sun” logo looked very much like an ecstasy tablet and was sold as such. He experienced a severe asthma attack just after ingesting the half tablet and it evolved over the next few hours into fatal cardiorespiratory arrest. Biological samples, taken after embalming, were analyzed by high‐performance liquid chromatography tandem mass spectrometry (HPLC‐MS/MS). Analysis revealed meta‐chlorophenylpiperazine (mCPP) in concentrations of 45.8 mg in a similar tablet obtained later from the drug dealer, 5.1 ng/mL in the bile, 0.3 ng/g in the liver, 15.0 ng/mL in the urine, and its absence in a hair sample (<0.02 ng/mg), which indicated he was not a regular user (whereas strong concentrations of MDMA and cocaine were found in the hair). Interrogated by the police after his arrest, the dealer said that he had sold the victim and for the very first time two tablets with the same “smiling sun” logo. The tablet used for analysis was from the same brand as the one ingested by the victim. The autopsy excluded other causes of death, while the histological analyses showed a large number of polynuclear eosinophils in the bronchial walls, confirming the asthmatic pathology. None of the other organs examined (larynx, liver, heart, adrenal glands, and kidneys) showed any distinctive signs, and in particular no inflammatory infiltrate. The death was the result of an asthma attack in an asthmatic person, violently decompensated following ingestion of approximately 20 mg of mCPP.  相似文献   

13.
Illegal alcoholic beverages are often introduced into market using cheap technical alcohol, which is contaminated by denatonium benzoate (Bitrex) of very small concentration. Bitrex is the most bitter chemical compound and has to be removed before alcohol consumption. The home‐made methods utilize sodium hypochlorite to disintegrate particles of denatonium benzoate in alcohol and to remove bitter taste before trading. In this experimental studies, we propose a novel method that detects in a fast way the remnants of denatonium benzoate in dubious alcohol samples by Raman spectroscopy. This method applies a portable Raman spectrometer of excitation wavelength 785 nm and utilizes the effect of surface‐enhanced Raman spectroscopy (SERS) to recognize the suspected alcoholic beverages. High effectiveness (over 98%) of YES/NO classification of the investigated samples was observed when the nonlinear algorithm support vector machine (SVM) was exploited at carefully adjusted detection parameters. The method can identify illicit alcohol within minutes.  相似文献   

14.
Raman spectroscopy has been applied to characterize fiber dyes and determine the discriminating ability of the method. Black, blue, and red acrylic, cotton, and wool samples were analyzed. Four excitation sources were used to obtain complementary responses in the case of fluorescent samples. Fibers that did not provide informative spectra using a given laser were usually detected using another wavelength. For any colored acrylic, the 633‐nm laser did not provide Raman information. The 514‐nm laser provided the highest discrimination for blue and black cotton, but half of the blue cottons produced noninformative spectra. The 830‐nm laser exhibited the highest discrimination for red cotton. Both visible lasers provided the highest discrimination for black and blue wool, and NIR lasers produced remarkable separation for red and black wool. This study shows that the discriminating ability of Raman spectroscopy depends on the fiber type, color, and the laser wavelength.  相似文献   

15.
Bismuth oxychloride (BiOCl) was the first viable synthetic pearl pigment developed 50 years ago. It was only used for a limited time period in automotive paint (model years 1998–2000), serving to produce luster for a single Chrysler black metallic color. Identification of this pigment in an unknown automotive paint can thus facilitate determination of the vehicle of origin. Bismuth oxychloride imparts effects similar to those produced by silver/white mica pearlescent pigments, and such a pigment was used together with bismuth oxychloride in at least one original equipment manufacturer (OEM) basecoat. Silver/white micas are now used primarily in white pearl tricoat systems. This article describes the identification of bismuth oxychloride and silver/white mica pearlescent pigments in automotive finishes using FT‐IR spectroscopy, X‐ray fluorescence (XRF) spectrometry, and SEM/EDS analysis. Data for some cadmium pigments, which were used in automotive paint several decades ago, are also presented as they produce infrared absorptions similar to that of bismuth oxychloride.  相似文献   

16.
This study highlights the problem of levamisole‐adulterated cocaine in context of active traffic participation. For the purposes of levamisole concentration monitoring in human serum, an analytical method based on LC‐MS/MS and solid‐phase extraction was applied. A Luna 5 μm C18 (2) 100 A, 150 mm × 2 mm column and a mobile phase consisting of A (H2O/methanol = 95/5, v/v) and B (H2O/methanol = 3/97, v/v), both with 10 mM ammonium acetate and with 0.1% acetic acid (pH = 3.2), were used. The validation experiments demonstrated that the method applied was appropriate for levamisole quantification in human serum. For 23% of levamisole‐positive samples, the concentrations exceeded 20 ng/mL. Therefore, the interaction of this drug with cocaine has to be considered as important for active traffic participation. As a consequence, monitoring of levamisole concentration in human serum is recommended, as long as it is used as cocaine adulterant.  相似文献   

17.
Raman spectroscopy has found increased use in the forensic controlled substances laboratory in recent years due to its rapid and nondestructive analysis capabilities. Here, Raman spectroscopy as a screening test for methamphetamine in clandestine laboratory liquid samples is discussed as a way to improve the efficiency of a laboratory by identifying the most probative samples for further workup among multiple samples submitted for analysis. Solutions of methamphetamine in ethanol, diethyl ether, and Coleman fuel were prepared in concentrations ranging from 0.5% to 10% w/v, and Raman spectra of each were collected. A concentration‐dependant Raman peak was observed at 1003 per cm in each solution in 4% w/v and greater solutions. Case samples were analyzed and also found to reliably contain this diagnostic peak when methamphetamine was present. The use of this diagnostic indicator can save the forensic controlled substances laboratory time and materials when analyzing clandestine laboratory liquid submissions.  相似文献   

18.
Estimating postmortem interval (PMI) of surface found skeletal remains is challenging. This novel study used UV‐Vis‐NIR spectroscopy to scan soil collected from cadaver decomposition islands (CDIs) ranging from 15‐ to 963‐d postmortem and control soils. A decomposition product spectra model (DPS model) was constructed by deducting the control soil spectra from the CDI soil spectra for the estimation of postmortem indices: PMI (d), ADD4, ADD10, and ADD20. The DPS model (n = 55) was calibrated and subjected to a full cross‐validation. Calibration R2 and RPD for the DPS model ranged from 0.97 to 0.99 and from 6.1 to 9.9, respectively, for the four postmortem interval indices. Validation R2 and RPD for the DPS model ranged from 0.73 to 0.80 and from 1.9 to 2.2, respectively. The DPS model estimated postmortem intervals for three test CDIs in a clay soil under perennial grassland (test set 1; n = 3) and six CDIs in a sandy soil under a loblolly pine forest (test set 2; n = 6). Test set 1 had PMI prediction ranges from ?69 to ?117 days, ?796 to +832 ADD4, +552 to +2672 ADD10, and ?478 to ?20 ADD20 of observed PMI. Test set 2 PMI prediction ranged from ?198 to ?65 days, ?9923 to +2629 ADD4, ?6724 to +1321 ADD10, and ?2850 to +540 ADD20 of observed PMI. Test set 2 had poor predictions for two CDIs, for all measures of postmortem indices resulting in discussion of sampling depth, effect of body mass index (BMI), and scavenging.  相似文献   

19.
Current concerns regarding terrorism and international crime highlight the need for new techniques for detecting unknown and hazardous substances. A novel Raman spectroscopy‐based technique, spatially offset Raman spectroscopy (SORS), was recently devised for noninvasively probing the contents of diffusely scattering and opaque containers. Here, we demonstrate a modified portable SORS sensor for detecting concealed substances in‐field under different background lighting conditions. Samples including explosive precursors, drugs, and an organophosphate insecticide (chemical warfare agent surrogate) were concealed inside diffusely scattering packaging including plastic, paper, and cloth. Measurements were carried out under incandescent and fluorescent light as well as under daylight to assess the suitability of the probe for different real‐life conditions. In each case, it was possible to identify the substances against their reference Raman spectra in less than 1 min. The developed sensor has potential for rapid detection of concealed hazardous substances in airports, mail distribution centers, and customs checkpoints.  相似文献   

20.
The spectroscopic identification of body fluids in situ is a major objective in forensic science. This approach offers the confirmatory, nondestructive, rapid, and on‐scene identification of various body fluids. Although Raman spectroscopy has shown tremendous promise toward this goal in prior proof‐of‐concept experiments, a significant challenge which still remains is substrate interference. Here, an approach for detecting semen stains in situ on various substrates using Raman spectroscopy is explored. Simulated semen evidence was prepared on skin, glass, and various fabrics. Raman data were accumulated from stains without any pretreatment using a common confocal mapping spectrometer using 785 nm laser excitation. The results demonstrate that the spectroscopic interferences encountered by substrates can be reduced and eliminated using a combination of existing subtraction techniques and chemometric models. Heterogeneous substrates proved most challenging, however, automatic subtraction treatment, and location of fluid hotspots was able to elucidate a clear spectroscopic signature of semen in every instance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号