首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
Solid-phase microextraction (SPME) is a new extraction technique with many advantages: small sample volume, simplicity, quickness and solvent-free. It is mainly applied to environmental analysis, but is also useful for the extraction of drugs from biological samples. In this paper the use of SPME is proposed for the determination of methadone and its main metabolite EDDP in hair by GC-MS. The hair samples were washed, cut into 1-mm segments, and incubated with Pronase E for 12 h. A 100-micron polydimethylsiloxane (PDMS) film fibre was submerged for 30 min in a diluted solution of the hydrolysis liquid (1:4 with borax buffer) containing methadone-d3 and EDDP-d3 as internal standards. Once the microextraction was concluded the fibre was directly inserted into the CG injection port. Linearity was found for methadone and EDDP in the range studied, 1.0-50 ng/mg hair, with correlation coefficients higher than 0.99. Interassay relative standard deviation (R.S.D) was determined to be less than 13.30% for methadone and less than 8.94% for EDDP, at 3.0 and 30.0 ng/mg. Analytical recoveries were close to 100% for both compounds on spiked samples. The method was applied to the analysis of real hair samples from eight patients of a methadone maintenance programme. The concentration of methadone in hair ranged from 2.45 to 78.10 ng/mg, and for EDDP from 0.98 to 7.76 ng/mg of hair.  相似文献   

2.
A rapid and sensitive method using LC-MS/MS triple stage quadrupole for the determination of traces of amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"), 3,4-methylenedioxyethamphetamine (MDEA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in hair, blood and urine has been developed and validated. Chromatography was carried out on an Uptisphere ODB C(18) 5 microm, 2.1 mm x 150 mm column (Interchim, France) with a gradient of acetonitrile and formate 2 mM pH 3.0 buffer. Urine and blood were extracted with Toxitube A (Varian, France). Segmented scalp hair was treated by incubation 15 min at 80 degrees C in NaOH 1M before liquid-liquid extraction with hexane/ethyl acetate (2/1, v/v). The limits of quantification (LOQ) in blood and urine were at 0.1 ng/mL for all analytes. In hair, LOQ was <5 pg/mg for MA, MDMA, MDEA and MBDB, at 14.7 pg/mg for AP and 15.7 pg/mg for MDA. Calibration curves were linear in the range 0.1-50 ng/mL in blood and urine; in the range 5-500 pg/mg for MA, MDMA, MDEA and MBDB, and 20-500 pg/mg for AP and MDA. Inter-day precisions were <13% for all analytes in all matrices. Accuracy was <20% in blood and urine at 1 and 50 ng/mL and <10% in hair at 20 and 250 pg/mg. This method was applied to the determination of MDMA in a forensic case of single administration of ecstasy to a 16-year-old female without her knowledge during a party. She suffered from hyperactivity, sweating and agitation. A first sample of urine was collected a few hours after (T+12h) and tested positive to amphetamines by immunoassay by a clinical laboratory. Blood and urine were sampled for forensic purposes at day 8 (D+8) and scalp hair at day 60 (D+60). No MDMA was detected in blood, but urine and hair were tested positive, respectively at 0.42 ng/mL and at 22 pg/mg in hair only in the segment corresponding to the period of the offence, while no MDA was detectable. This method allows the detection of MDMA up to 8 days in urine after single intake.  相似文献   

3.
A specific method has been developed for the quantitative determination of methadone (MTD) and its major metabolite, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), in hair.An amount of 50mg hair samples were incubated in 0.01M HCl overnight at 60 degrees C and deuterated internal standards of MTD and EDDP were added before extraction. Hydrolyzed solutions were extracted by automated solid-phase extraction procedure and analyzed on a gas chromatography (GC) coupled to a ion trap mass spectrometer (MS). Positive chemical ionization was used with acetonitrile as liquid reagent. The different validation parameters, linearity, repeatability, recovery and detection limits are presented. A relative standard deviation (R.S.D.) of 12 and 11% was obtained for the repeatability of MTD and EDDP, respectively. The limits of quantification (LOQ) was 0.05ng/mg for MTD and 0.2ng/mg for EDDP.A number of 26 hair samples from human subjects following a long-term MTD therapy were analyzed by this method. Blood samples of these subjects were analyzed with a routine method using a liquid-liquid extraction and GC/nitrogen phosphorus detector (NPD). MTD was quantified in blood and hair samples and EDDP found in 50% of the hair sample.A comparison was made between the concentrations found in blood or in hair and the dose administrated. This study could demonstrate that there is no relation between the administrated dose and MTD or EDDP concentrations in hair.  相似文献   

4.
A procedure is presented for the simultaneous identification and quantification of morphine (MOR), codeine (COD), ethylmorphine (EM), 6-monoacetylmorphine (6-MAM), cocaine (COC), benzoylecgonine (BZE), ecgonine methylester (EME) and cocaethylene (CE), contained in the hair of opiates and cocaine addicts. The method involves decontamination in dichloromethane, pulverization in a ball mill, heat-acid hydrolysis, addition of deuterated internal standards, liquid-liquid extraction and gas chromatography/mass spectrometry (GC/MS) after silylation. The limit of detection (LOD) was ~0.1–0.8 ng/mg for each drug, using a 30-mg hair sample. The method is reproductible, with a coefficient of variation (CV) of ~8–17%. Cocaine and 6-monoacetylmorphine were the major compounds detected in cases of cocaine (14 cases) and heroin (68 cases) intake. Concentrations were in the range 0.4–78.4 ng/mg (COC), 0.0–36.3 ng/mg (BZE), 0.0–1.6 ng/mg (EME), 0.0–2.1 ng/mg (CE), 0.0–84.3 ng/mg (6-MAM), 0.2–27.1 ng/mg (MOR) and 0.1–19.6 ng/mg (COD). An application in forensic sciences, involving multi-sectional analysis, is given.  相似文献   

5.
A sensitive analytical method was developed for quantitative analysis of delta(9)-tetrahydrocannabinol (delta(9)-THC), 11-nor-delta(9)-tetrahydrocannabinol-carboxylic acid (delta(9)-THC-COOH), cannabinol (CBN) and cannabidiol (CBD) in human hair. The identification of delta(9)-THC-COOH in hair would document Cannabis use more effectively than the detection of parent drug (delta(9)-THC) which might have come from environmental exposure. Ketamine was added to hair samples as internal standard for CBN and CBD. Ketoprofen was added to hair samples as internal standard for the other compounds. Samples were hydrolyzed with beta-glucuronidase/arylsulfatase for 2h at 40 degrees C. After cooling, samples were extracted with a liquid-liquid extraction procedure (with chloroform/isopropyl alcohol, after alkalinization, and n-hexane/ethyl acetate, after acidification), which was developed in our laboratory. The extracts were analysed before and after derivatization with pentafluoropropionic anhydride (PFPA) and pentafluoropropanol (PFPOH) using a Hewlett Packard gas chromatographer/mass spectrometer detector, in electron impact mode (GC/MS-EI). Derivatized delta(9)-THC-COOH was also analysed using a Hewlett Packard gas chromatographer/mass spectrometer detector, in negative ion chemical ionization mode (GC/MS-NCI) using methane as the reagent gas. Responses were linear ranging from 0.10 to 5.00 ng/mg hair for delta(9)-THC and CBN, 0.10-10.00 ng/mg hair for CBD, 0.01-5.00 ng/mg for delta(9)-THC-COOH (r(2)>0.99). The intra-assay precisions ranged from <0.01 to 12.40%. Extraction recoveries ranged from 80.9 to 104.0% for delta(9)-THC, 85.9-100.0% for delta(9)-THC-COOH, 76.7-95.8% for CBN and 71.0-94.0% for CBD. The analytical method was applied to 87 human hair samples, obtained from individuals who testified in court of having committed drug related crimes. Quantification of delta(9)-THC-COOH using GC/MS-NCI was found to be more convenient than GC/MS-EI. The latter may give rise to false negatives due to the detection limit.  相似文献   

6.
目的采用液-液萃取、衍生化和GC/MS、GC/NPD方法,进行毛发中氯胺酮定性定量分析。方法选择4-苯基丁胺为内标,毛发样本用NaOH、HCl及芳基硫酸酯酶/β-葡萄糖醛酸酶等3种方式进行水解,再进行衍生化后,采用GC/MS和GC/NPD方法定性定量分析。对不同水解和衍生化条件以及提取溶剂进行比较优化,并考察方法精密度、稳定性和检出限。结果方法的提取回收率大于95%,精密度和样品稳定性良好,日内和日间标准偏差小于6%;采用GC/NPD和GC/MS直接分析毛发中的氯胺酮,检出限为0.2ng/mg和2.0ng/mg,线性范围为10.0~250.0ng/mg,相关系数均大于0.99;采用酰化衍生化后分析,GC/NPD和GC/MS检出限分别提高至0.1ng/mg和0.2ng/mg。结论该方法回收率高、检测限低,可以用于毛发中氯胺酮的定性定量分析检验。  相似文献   

7.
This work presents the validation of a new immunological assay, the One-Step enzyme-linked immunosorbent assay (ELISA) tests from International Diagnostic Systems Corp. for the screening of drugs of abuse (cannabis, amphetamines, opiates, and cocaine) in human hair, with subsequent GC-MS confirmation. After decontamination and segmentation into small pieces, 50 mg of hair sample were incubated in 1 ml of methanol during 16 h at 40 degrees C. A 100 microL aliquot was collected and evaporated to dryness in presence of 100 microL of methanol/hydrochloric acid (99:1, v/v) to avoid amphetamines loss. The dried extract was dissolved in 100 microL of the "sample and standard diluent" solution included in the kit. This solution was submitted to analysis according to the recommended instructions of the manufacturer. During the validation phase, GC-MS confirmations were conducted according to our fully validated and published methods for opiates, cocaine, cannabis, and amphetamines determinations in hair. In a last development step, these procedures were slightly modified to directly confirm ELISA results by GC-MS using the methanolic extract. Ninety-three specimens were simultaneously screened by the ELISA tests (103 for tetrahydrocannabinol (THC)) and confirmed by GC-MS. Twenty were found positive for cannabis (THC: 0.10-6.50 ng/mg), 21 for cocaine (0.50-55.20 ng/mg), 24 for opiates (6-acetylmorphine (6-AM): 0.20-11.60 ng/mg, MOR: 0.20-8.90 ng/mg, codeine (COD): 0.20-5.90 ng/mg), and 13 for amphetamines (AP: 0.20 and 0.27 ng/mg, methamphetamine (MAP): 0.30 and 1.10 ng/mg, methylenedioxymethamphetamine (MDMA): 0.22-17.80 ng/mg). No false negative results were observed according to the Society of Hair Testing's (SoHT) cutoffs (0.5 ng/mg for cocaine, 0.2 ng/mg for opiates and amphetamines, and 0.1 ng/mg for THC). The One-Step ELISA kits appear suitable due to their sensitivity and specificity for drug of abuse screening in hair. This technology should find interest in workplace drug testing or driving license regranting, especially when many samples have to be tested with a high rate of negative samples, as ELISA is an easy and high-throughput method.  相似文献   

8.
Fatty acid ethyl esters (FAEE) are products of the nonoxidative ethanol metabolism, which are known to be detectable in blood only about 24h after the last alcohol intake. After deposition in hair they should be suitable long-term markers of chronically elevated alcohol consumption. Therefore, a method for the analysis of ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate from hair was developed based on the extraction of the hair sample by a dimethylsulphoxide (DMSO)/n-hexane mixture, separation and evaporation of the n-hexane phase and application of headspace solid-phase microextraction (HS-SPME) in combination with gas chromatography-mass spectrometry (GC-MS) to the extract. For use as internal standards, the corresponding D(5)-ethyl esters were prepared. The HS-SPME/GC-MS measurements were automatically performed using a multi-purpose sampler. The detection limits of the FAEE were between 0.01 and 0.04ng/mg and the reproducibility was between 3.5 and 16%. By application of the method to hair samples of 21 fatalities with known heavy alcohol abuse 0.045-2.4ng/mg ethyl myristate, 0.35-13.5ng/mg ethyl palmitate, 0.25-7.7ng/mg ethyl oleate and 0.05-3.85ng/mg ethyl stearate were measured. For social drinkers (30-60g ethanol per week), the concentrations were about one order of magnitude smaller. For 10 teetotalers negative results or traces of ethyl palmitate were found. It was shown by supplementary investigations in single cases that FAEE are also present in sebum, that there is no strong difference in their concentrations between pubic, chest and scalp hair, and that they are detectable in hair segments after a 2 months period of abstinence. From the results follows that the measurement of FAEE concentrations in hair is a useful way for a retrospective detection of alcohol abuse.  相似文献   

9.
In this paper, a high performance liquid chromatographic method with fluorescence detection (HPLC-FL) for the determination of fenfluramine (Fen) and norfenfluramine (Norf) in human hair as biomarker metabolites of N-nitrosofenfluramine (N-Fen) is described. Washed and cut hair segments were extracted by ultrasonication for 1h at room temperature in methanol. The extract was evaporated and applied for derivatization with the fluorescent reagent 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl). An HPLC-FL analysis was performed using an ODS column with mobile phase composition of acetonitrile and water (65:35, v/v) and monitored at 430 nm (excitation 325 nm). The method was sensitive with detection limits of 36 and 16 pg/mg hair for Fen and Norf, respectively. The linearity was assessed in the range 0.036-144 ng/mg for Fen and 0.016-127 ng/mg for Norf with correlation coefficients larger than 0.999. The method was successfully used for the segmental determination of Fen and Norf in hair samples obtained from hospitalized patients diagnosed with hepatotoxicity and suspected to ingest N-Fen. Both Fen and Norf could be detected in these patients' hair samples in the ranges 43-1389 pg/mg for Fen and 18-680 pg/mg for Norf and the results showed that the patients might ingest N-Fen for a period of not less than 5 months. As well, the method was applied for the determination of Fen and Norf in rats that possess pigmented and non-pigmented hair after an intraperitoneal administration of Fen. Both compounds were determined in black as well as in white hair.  相似文献   

10.
The metabolite-to-parent drug ratios were determined in the hair of 2444 methamphetamine (MA) abusers who had produced MA-positive hair results from 2001 to May 2005 and in the hair of 53 ecstasy abusers who had produced positive methylenedioxymethamphetamine (MDMA) hair results from 2002 to May 2005. For the hair analyses, hair strands were washed, cut into small pieces and extracted for 20 h in 1 mL methanol containing 1% HCl. Drugs in the extract were determined by gas chromatography-mass spectrometry (GC-MS) using selective ion monitoring after derivatization with trifluoroacetic anhydride. The six range groups were divided as follows on the basis of MA concentrations in hair (n = 2389): 0.5-5 ng/mg (n = 950), 5-10 ng/mg (n = 582), 10-20 ng/mg (n = 503), 20-30 ng/mg (n = 160), 30-40 ng/mg (n = 80), more than 40 ng/mg (n = 114) to assess the correlations between MA concentrations and metabolite-to-parent drug ratios. In groups of higher MA concentrations, lower ratios of AP/MA were found, and there was a statistically significant difference among six range groups. Comparisons of age groups (tens, twenties, thirties, forties, fifties, and sixties) and male and female subjects for the ratios of AP/MA showed a statistically significant difference. The detection of metabolites and the parent drug with reasonable ratios was found to be a useful indicator for distinguishing internal drug incorporation from external contamination. In our study, MA users can produce 0.4-116% (mean = 9%) of amphetamine (AP) concentrations in hair, and ecstasy users 1-110% (mean = 12%) of methylenedioxyamphetamine (MDA) in appropriately washed hair samples.  相似文献   

11.
This paper describes a procedure for the detection and quantification of ethyl-glucuronide (EtG) in hair samples. During method development the efficacy of extraction of EtG from hair was compared in four extraction methods: (a) methanol; (b) methanol:water (1:1); (c) water; and (d) water:trifluoroacetic acid (9:1). In addition, three derivatizing agents were compared as well: N,O-bistrimethylsilyl-trifluoroacetamide (BSTFA): trimethylchlorosilane (TMCS) (99:1), pentafluoropropionic anhydride (PFPA) and heptafluorobutyric anhydride (HFBA). Water was found to be the best extracting solvent and PFPA the best derivatizing agent. Both provided the highest recoveries, with cleaner extracts and more stable derivatives. The final method is as follows: about 100mg of hair are sequentially washed with water and acetone. The decontaminated sample is finely cut with scissors, then the deuterated internal standard (EtG-d5) and 2 mL of water are added. After sonication for 2 h, the sample is maintained at room temperature overnight. Derivatization is performed with PFPA. Derivatives are injected into a GC-MS system in the electronic impact mode. The method shows linearity over the range of concentrations from 0.050 to 5 ng/mg. Detection and quantification limits are 0.025 and 0.050 ng/mg, respectively. Mean recoveries for the three studied concentrations (low, medium and high) are higher than 87%. The coefficients of variation in intra- and inter-assay precision are always lower than 7%. The method is being routinely applied in our lab for the diagnosis of chronic alcohol consumption.  相似文献   

12.
In previous investigations hair analysis for ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEE) proved to be suitable for the detection of excessive alcohol consumption. The aim of this study was to compare EtG and FAEE concentrations in hair of alcoholics, social drinkers and teetotallers. Hair samples from 10 alcoholics in withdrawal treatment, 11 fatalities with documented excessive alcohol consumption, four moderate social drinkers who consumed up to 20 g ethanol per day, and three strict teetotallers were analysed. After external degreasing with n-heptane, extraction with a dimethyl sulfoxide/n-heptane mixture and headspace solid-phase microextraction of the extracts, four fatty acid ethyl esters (FAEEs) (ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate) were analysed by gas chromatography-mass spectrometry (GC-MS) with deuterated internal standards. EtG was determined by GC-MS/NCI after ultrasonication of the samples with H2O, cleanup by SPE with aminopropyl columns and PFP derivatisation. The following concentrations were measured for the four groups: teetotallers EtG < 0.002 ng/mg, FAEE 0.05-0.37 ng/mg, moderate social drinkers EtG < 0.002 ng/mg, FAEE 0.26-0.50 ng/mg, alcoholic patients EtG 0.030-0.415 ng/mg, FAEE 0.65-20.50 ng/mg and the fatalities with alcohol history EtG 0.072-3.380 ng/mg, FAEE 1.30-30.60 ng/mg. The results confirm that by using a cut-off value of the sum of FAEE > 1 ng/mg and/or a positive EtG result in hair, excessive alcohol consumption can be identified using hair analysis. However, no significant correlation between the EtG and FAEE concentrations in the positive cases could be shown. Segmental analysis of some of the specimens did not reveal the same distribution for EtG compared to FAEE in hair, and no chronological accordance compared to the self-reported alcohol consumption could be observed for both parameters. These different results of both methods are discussed in terms of differences between EtG and FAEE in mechanism of formation and incorporation into hair and elimination from hair.  相似文献   

13.
The relative toxicity of ephedra-containing dietary supplements is disputed. In order to ascertain the magnitude of the problem, we reviewed all autopsies in our Medical Examiner's jurisdiction, from 1994 to 2001, where ephedrine or any its isomers (E+) were detected. Toxicology testing results were tabulated and anatomic findings in E+ cases were compared to those in a control group of drug-free trauma victims. Of 127 E+ cases identified, 33 were due to trauma. Decedents were mostly male (80.3%) and mostly Caucasian (59%). Blood ephedrine concentrations were <0.49 mg/l in 50% of the cases, range 0.07-11.73 mg/l in trauma victims, and 0.02-12.35 mg/l in non-trauma cases. Norephedrine (NE) was present in the blood of 22.8% (mean of 1.81 mg/l, S.D.=3.14 mg/l) and in the urine of 36.2% (mean of 15.6 mg/l, S.D.=21.50mg/l). Pseudoephedrine (PE) was present in the blood of 6.3% (8/127). More than 88% (113/127) of the decedents also tested positive for other drugs, the most common being cocaine (or its metabolites) and morphine. The most frequent pathologic diagnoses were hepatic steatosis (27/127) and nephrosclerosis (22/127). Left ventricular hypertrophy was common, and coronary artery disease (CAD) detected in nearly one third of the cases. The most common findings in E+ deaths are those generally associated with chronic stimulant abuse, and abuse of other drugs was common in those with CAD. There were no cases of heat stroke or rhabdomyolysis. In most cases, norephedrine was not detected, suggesting it plays no role in ephedrine toxicity.  相似文献   

14.
A method using liquid chromatography–tandem mass spectrometry (LC–MS/MS) to simultaneously quantify amphetamines, opiates, ketamine, cocaine, and metabolites in human hair is described. Hair samples (50 mg) were extracted with methanol utilizing cryogenic grinding. Calibration curves for all the analytes were established in the concentration range 0.05–10 ng/mg. The recoveries were above 72%, except for AMP at the limit of quantification (LOQ), which was 48%. The accuracies were within ±20% at the LOQ (0.05 ng/mg) and between −11% and 13.3% at 0.3 and 9.5 ng/mg, respectively. The intraday and interday precisions were within 19.6% and 19.8%, respectively. A proficiency test was applied to the validated method with z-scores within ±2, demonstrating the accuracy of the method for the determination of drugs of abuse in the hair of individuals suspected of abusing drugs. The hair concentration ranges, means, and medians are summarized for abused drugs in 158 authentic cases.  相似文献   

15.
The quantitative analysis of 11-nor-D(9)-tetrahydrocannabinol-9-carboxylic acid (THCCOOH) in hair requires a sensitive method to detect a low-pg level. Before applying the method to real hair samples, the method was validated; in this study, we examined the uncertainty obtained from around the cut-off level of THCCOOH in hair. We calculated the measurement uncertainty (MU) of THCCOOH in hair as follows: specification of the measurand, identification of parameters using "cause and effect" diagrams, quantification of the uncertainty contributions using three factors, the uncertainty of weighing the hair sample, the uncertainty from calibrators and the calibration curve, and the uncertainty of the method precision. Finally, we calculated the degrees of freedom and the expanded uncertainty (EU). The concentration of THCCOOH in the hair sample with its EU was (0.60 ± 0.1) × 10(-4)ng/mg. The relative uncertainty percent for the measurand 0.60 × 10(-4)ng was 9.13%. In this study, we also selected different concentrations of THCCOOH in real hair samples and then calculated the EU, the relative standard uncertainty (RSU) of the concentration of THCCOOH in the test sample [u(r)(c0)], the relative uncertainty percent, and the effective degree of freedom (v(eff)). When the concentrations of THCCOOH approached the cut-off level, u(r)(c0) and the relative uncertainty percent increased but absolute EU and v(eff) decreased.  相似文献   

16.
The retrospective investigation of the exposure to toxic substances by general unknown screening of hair is still a difficult task because of the large number of possible poisons, the low sample amount and the difficult sample matrix. In this study the use of liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) was tested as a promising technique for this purpose. In the optimized procedure, 20mg hair were decontaminated with water and acetone and two times extracted by 18h incubation with 0.5ml of a mixture of methanol/acetonitrile/H(2)O/ammonium formate at 37°C. A mixture of deuterated standards from different drug groups was added for quantification and method control. The united extracts were evaporated to a residue of 0.5ml and 5μl were injected without clean-up for LC-QTOF-MS measurement (instrument Agilent 6530) with positive electrospray ionization and in data dependent acquisition mode. For peak identification the accurate mass data base and spectral library of the authors was used which contains accurate mass CID spectra of more than 2500 and theoretically calculated accurate mass data of more than 7500 toxicologically relevant substances. Validation at the example of 24 illegal drugs, their metabolites and benzodiazepines resulted in limits of detection of 0.003-0.015ng/mg, and limits of quantification of 0.006-0.021ng/mg with good accuracy and intra- and interday reproducibility. The matrix effect by ion suppression/enhancement was 72-107% for basic drugs and 42-75% for benzodiazepines. Yields of the hair extraction above 90% were determined for 59 drugs or metabolites. The method was applied to hair samples from 30 drug fatalities and from 60 death cases with known therapeutic drug intake at life time. Altogether 212 substances were identified with a frequency per drug of 1-40 (mean 4.2) and per case of 2-33 (mean 10.2), between them 35 illegal drug related substances and 154 therapeutic drugs. Comparison with the data known from case histories and from the analysis of blood, urine and gastric content showed only a low agreement, with many unexpected drugs detected and many reported drugs not detected in hair. Basic drugs and metabolites such as opioides, cocaine, amphetamines, several groups of antidepressants, neuroleptics, beta-blockers or the metamizole metabolite noramidopyrine were found with high frequency whereas acidic and several neutral drugs such as cannabinoids, salicylic acid, furosemide, barbiturates, phenprocoumone or cardiac glycosides could not be detected with sufficient sensitivity, mainly because of the low ion yield of positive ESI for these compounds. The advantage of a comprehensive acquisition of all substances is paid by a lower sensitivity in comparison to targeted screening LC-MS/MS procedures. In conclusion, the procedure of sample preparation and LC-QTOF-MS analysis proved to be a robust and sensitive routine method in which the qualitative screening for a wide variety of toxic substances in hair is combined with the quantitative determination of selected illegal drugs.  相似文献   

17.
Several bodybuilders, all winners of international competitions, were arrested for trafficking of a number of doping agents including anabolic steroids, ephedrine, beta-adrenergics, human chorionic gonadotropin, antidepressants, and diuretics. In accordance with the recent French law against doping, the judge asked to test seven bodybuilders to identify doping practices. Hair and urine specimens were collected for analysis. After decontamination, a 100 mg hair strand was pulverized in a ball mill, hydrolyzed, extracted, and derivatized to be tested by GC/MS for anabolic steroids, beta-adrenergic compounds, ephedrine, and other doping agents. Urine was analyzed for anabolic steroids and metabolites, beta-adrenergic compounds, ephedrine, and human chorionic gonadotropin, in addition to a broad spectrum screening with GC/MS. The following compounds were detected in urine: ephedrine (29 and 36 ng/mL, n = 2), clenbuterol (0.2 to 0.3 ng/mL, n = 3), norandrosterone (4.7 to 100.7 ng/mL, n = 7), norethiocholanolone (0.9 to 161.8 ng/mL, n = 6), stanozolol (1 to 25.8 ng/mL, n = 4), methenolone (2.5 to 29.7 ng/mL, n = 4), testosterone (3 to 59.6 ng/mL, n = 7), epitestosterone (1 to 20.4 ng/mL, n = 7) and ratio testosterone/epitestosterone >6 for four subjects (18.5 to 59.6). The following drugs were detected in hair: ephedrine (0.67 and 10.70 ng/mg, n = 2), salbutamol (15 to 31 pg/mg, n = 3), clenbuterol (15 to 122 pg/mg, n = 6), nandrolone (1 to 7.5 pg/mg, n = 3), stanozolol (2 to 84 pg/mg, n = 4), methenolone (17 and 34 ng/ml, n = 2), testosterone enanthate (0.6 to 18.8 ng/mg, n = 5), and testosterone cypionate (3.3 to 4.8 ng/mg, n = 2). These results document the doping practice and demonstrate repetitive exposure to anabolic compounds and confirm the value of hair analysis as a complement to urinalysis in the control of doping practice.  相似文献   

18.
Tetramethylene disulfotetramine (tetramine) is a rodenticide that has been banned for many years in China. Since 2005, inhabitants of a village in the Henan Province have been suffering from grand mal seizures. To investigate the possibility of tetramine as the cause, we developed a method to determine tetramine in human hair. Sample preparation involved external decontamination, frozen pulverization, and ultrasonication in 2 mL ethyl acetate in the presence of cocaine-d3 as an internal standard. The method exhibited good linearity; calibration curve was linear over a range of 0.1-20 ng/mg hair. The limit of detection for the assay was 0.05 ng/mg hair. Except for one subject (No. 4), all head and pubic hair samples were positive for tetramine. The concentrations of tetramine in pubic hair were significantly higher than those in the same subjects' head hair samples. Because of a long retention in body, segmental head hair analysis cannot provide an accurate exposure history of tetramine in the body.  相似文献   

19.
A method for the simultaneous determination of cocaine (COC) and cocaethylene (CE) in human hair was developed, using solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) as analytical technique to identify and quantify the drugs. Selected ion monitoring (SIM) mode was used to obtain higher sensitivity. The deuterated-labeled analogues were used as internal standards. The detector response was linear for the drugs studied over the range 0.4-15 ng/mg, with correlation coefficients higher than 0.995. The coefficients of variation oscillated between 0.65% and 14.18% and the accuracy was in the range from 0.73% to 11.20%. The limits of quantitation and detection were found to be acceptable. Finally, this method was applied to 15 hair samples from cocaine users, obtaining positive results in all cases. The mean concentrations were 5.39 ng/mg (range: 0.43-8.98 ng/mg) for cocaine and 1.11 ng/mg (range: 0.42-2.23 ng/mg) for cocaethylene.  相似文献   

20.
Determination of methamphetamine and amphetamine in hair was performed by gas chromatography/mass spectrometry using stable isotope-labeled internal standards, 2-methylamino-1-phenylpropane-2,3,3,3-d4 and 2-amino-1-phenylpropane-2,3,3,3-d4. Extraction of hair with methanol/5M hydrochloric acid (20:1) using ultrasonication was chosen as the standard method. The calibration curves for amphetamines in the hair were linear from 1 to 100 ng/mg (r greater than 0.99). The detection limit was 0.5 ng/mg at the 95% confidence level. The coefficients of variation (CV) (n = 8) of analysis using the spiked hair with methamphetamine were from 0.7 to 6%. The CV (n = 8) of analysis of the methamphetamine abuser's hair was 17.5%. Sectional analysis of monkey and human hair after methamphetamine ingestion suggested a good correlation between the duration of drug use and drug distribution in the hair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号