首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Thai government has recognized the possibility for legitimate cultivation of hemp. Further study of certain cannabinoid characteristics is necessary in establishing criteria for regulation of cannabis cultivation in Thailand. For this purpose, factors affecting characteristics of cannabinoids composition of Thai-grown cannabis were investigated. Plants were cultivated from seeds derived from the previous studies under the same conditions. 372 cannabis samples from landraces, three different trial fields and seized marijuana were collected. 100g of each sample was dried, ground and quantitatively analyzed for THC, CBD and CBN contents by GC-FID. The results showed that cannabis grown during March-June which had longer vegetative stages and longer photoperiod exposure, had higher cannabinoids contents than those grown in August. The male plants grown in trial fields had the range of THC contents from 0.722% to 0.848% d.w. and average THC/CBD ratio of 1.9. Cannabis in landraces at traditional harvest time of 75 days had a range of THC contents from 0.874% to 1.480% d.w. and an average THC/CBD ratio of 2.6. The THC contents and THC/CBD ratios of cannabis in second generation crops grown in the same growing season were found to be lower than those grown in the first generation, unless fairly high temperatures and a lesser amount of rainfall were present. The average THC content in seized fresh marijuana was 2.068% d.w. while THC/CBD ratios were between 12.6 and 84.09, which is 10-45 times greater than those of similar studied cannabis samples from the previous study. However, most Thai cannabis in landraces and in trial fields giving a low log(10) value of THC/CBD ratio at below 1 may be classified as intermediate type, whereas seized marijuana giving a higher log(10) value at above 1 could be classified as drug type. Therefore, the expanded information provided by the current study will assist in the development of criteria for regulation of hemp cultivation in Thailand.  相似文献   

2.
The potency of cannabis plant and cannabis products seized in New Zealand over the period of 20 years is studied. The earlier part of the study includes mainly imported cannabis oil and cannabis resin, and both imported and locally grown cannabis plant, that was seized by the police. The later part of the study includes little imported material. Cannabis plant is now locally grown, cannabis oil is locally manufactured and imported cannabis resin is rarely seized. The average potency of the cannabis plant available to the user has not increased over the 20 years period. Cannabis leaf contains on average 1% THC and the female flowering heads on average 3.5% THC. The average potency of cannabis oil has dropped from its peak at 34% THC in 1985 to 13% THC in 1995.  相似文献   

3.
Cannabis products (marijuana, hashish, cannabis oil) are the most frequently abused illegal substances worldwide. Delta-9-tetrahydrocannabinol (THC) is the main psychoactive component of Cannabis sativa plant, whereas cannabidiol (CBD) and cannabinol (CBN) are other major but no psychoactive constituents. Many studies have already been carried out on these compounds and chemical research was encouraged due to the legal implications concerning the misuse of marijuana. The aim of this study was to determine THC, CBD and CBN in a significant number of cannabis samples of Albanian origin, where cannabis is the most frequently used drug of abuse, in order to evaluate and classify them according to their cannabinoid composition. A GC-MS method was used, in order to assay cannabinoid content of hemp samples harvested at different maturation degree levels during the summer months and grown in different areas of Albania. This method can also be used for the determination of plant phenotype, the evaluation of psychoactive potency and the control of material quality. The highest cannabinoid concentrations were found in the flowers of cannabis. The THC concentrations in different locations of Albania ranged from 1.07 to 12.13%. The influence of environmental conditions on cannabinoid content is discussed. The cannabinoid content of cannabis plants were used for their profiling, and it was used for their classification, according to their geographical origin. The determined concentrations justify the fact that Albania is an area where cannabis is extensively cultivated for illegal purposes.  相似文献   

4.
Four hundred forty-nine fresh cannabis plants and 26 fruiting tops harvested in Jutland (Denmark) from July to September 1988 were characterized according to weight, height, marihuana yield, and cannabinoid content. The median weights were 308 g and 584 g for plants grown outdoors (n = 418) and in greenhouses (n = 31), respectively. The average marihuana yield was 8.7% for the plants grown outdoors and slightly lower for the greenhouse plants. Great variations, however, were seen both between and within the individual harvests. The mean concentration of total THC (tetrahydrocannabinol) was 0.87% for the plants grown outdoors. An increase according to the month of harvest was observed. For plants grown in greenhouses the mean value of total THC was 1.35%, while the mean concentration of fruiting tops was 2.13%. All plants contained cannabidiol (CBD), but only negligible concentrations of other cannabinoids. In approximately 80% of the plants the THC content was higher than the CBD content (drug type), while the rest either contained equal concentrations (intermediate type) or most CBD (fiber type).  相似文献   

5.
Hair analysis has shown great potential in the detection and control of drug use. Whether an assay is of quantitative value roughly corresponding to the amount of drug consumed, is still a matter of debate. The present investigation was aimed at a possible relationship between the cannabinoid concentration in hair and the cumulative dose in regular users of cannabis. Hair samples from the vertex region of the scalp were obtained from 12 male regular users of cannabis, and 10 male subjects with no experience of cannabis served as controls. None of the subjects had his hair permed, bleached or colored. Cannabis users provided information on drug use such as the current cannabis dose per day, the cumulative cannabis dose of the last 3 months, as well as the frequency of cannabis use during the last year. The concentration of delta-9-tetrahydrocannabinol (THC), cannabinol (CBN) and cannabidiol (CBD) in hair was determined using gas chromatography-mass spectrometry. Cannabinoids were present in any hair sample of cannabis users, but were not detectable in control specimens. An increase in the amount of cannabinoids in hair with increasing dose was evident. The concentration of major cannabinoids (sum of THC, CBD and CBN) was significantly correlated to either the reported cumulative cannabis dose during the last 3 months or to the cannabis use during the last 3 months estimated from the daily dose and the frequency per year (r=0.68 or 0.71, p=0.023 or 0.014). A significant relationship between THC and the amount of cannabis used could not be established. As a conclusion, the sum of major cannabinoids in hair of regular users may provide a better measure of drug use than THC.  相似文献   

6.
The analysis of cannabis plant material submitted to seized‐drug laboratories was significantly affected by the signing of the Agricultural Improvement Act of 2018, which defined hemp and removed it from the definition of marijuana in the Controlled Substances Act. As a result, field law enforcement personnel and forensic laboratories now are in need of implementing new protocols that can distinguish between marijuana‐type and hemp‐type cannabis. Colorimetric tests provide a cost‐effective and efficient manner to presumptively identify materials prior to submission to a laboratory for analysis. This work presents the validation of the 4‐aminophenol (4‐AP) color test and demonstrates its utility for discriminating between marijuana‐type and hemp‐type cannabis (i.e., typification). Validation studies included the testing of numerous cannabinoid reference materials, household herbs, previously characterized cannabis plant samples, and real‐case samples. The 4‐AP test reliably produces a pink result when the level of Δ9‐tetrahydrocannabinol (THC) is approximately three times lower than the level of cannabidiol (CBD). A blue result is generated when the level of THC is approximately three times higher than that of CBD. Inconclusive results are observed when the levels of THC and CBD are within a factor of three from each other, demonstrating the limitations of the test under those scenarios.  相似文献   

7.
In recent years, increased 'cannabis potency', or Δ(9)-tetrahydrocannabinol (THC) content in cannabis products, has been reported in many countries. A survey of Japanese illicit cannabis was conducted from April 2010 to March 2011. In Japan, all cannabis evidence is transferred to the Minister of Health, Labour and Welfare after criminal trials. The evidence was observed at Narcotics Control Department offices in major 11 cities. The total number of cannabis samples observed was 9072, of which 6376 were marijuana. The marijuana seizures were further classified, and it was found that in terms of the number of samples, 65.2% of them were seedless buds, and by weight 73.0% of them were seedless buds. Seedless buds were supposed to be 'sinsemilla', a potent class of marijuana. THC, cannabinol (CBN) and cannabidiol (CBD) in marijuana seizures exceeding 1g were quantified. The number of samples analyzed was 1115. Many of them were shown to contain CBN, an oxidative product from THC. This was a sign of long-term storage of the cannabis and of the degradation of THC. Relatively fresh cannabis, defined by a CBN/THC ratio of less than or equal to 0.1, was chosen for analysis. Fresh seedless buds (335 samples) contained an average of 11.2% and a maximum of 22.6% THC. These values are comparable to those of 'high potency cannabis' as defined in previous studies. Thus, this study shows that highly potent cannabis products are distributed in Japan as in other countries.  相似文献   

8.
During the period of survey, the number of narcotic drug seizures by the law, especially cannabis resin, has increased considerably. The details on this development are presented. The following main analytical results were obtained: the median concentration of THC in cannabis resin has increased up to 8.6%, in cannabis plants the THC content has fluctuated between 1% and 3%. In the heroin samples since 1982, diamorphin has predominated in the base form; the diamorphin content had dropped to 32%, which is connected with a rise simultaneous in the concentration of noscapine (up to 9%). The concentration of cocaine hydrochloride had diminished at the end of the period to 62%; on the other hand, the amphetamine sulfate content increased to 69%. LSD trips used from 10 to 120 micrograms per trip. Methadone occurred mostly in the form of tablets containing 5 mg methadone hydrochloride.  相似文献   

9.
The three major cannabinoids, Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD) and cannabinol (CBN) were identified and determined quantitatively using a GCD (GC–EI) instrument, in samples of illicit herbal cannabis, seized by Customs and Police authorities in two areas of Greece (Ipiros and Lakonia) during 1996. These samples were sent by the above authorities to the Department of Forensic Medicine and Toxicology, University of Athens, for forensic chemical analysis. The cannabinoid content of these samples led to the classification of cannabis into two chemical phenotypes and to the differentiation of resinous and textile plants by using three different classification indexes. The cannabinoid content of cannabis plants is of forensic value in determining the geographical origin of cannabis samples, since it can be used for their classification, allocating this way the area of cultivation of the relative plants. The forensic aspects of cannabis classification are discussed.  相似文献   

10.
The THC-content in 1100 samples of cannabis resin and 600 of marihuana has been determined. The content of THC varied much, in the resin groups mostly depending on the origin and age of the resin and in the marihuana groups depending on the origin and race of the seeds.  相似文献   

11.
Evaluation of cannabinoid concentrations in products from the legal cannabis market has been fraught with uncertainty. The lack of standardized testing methodology and the susceptibility of cannabinoids to degradation under certain storage conditions complicates the efforts to assess total tetrahydrocannabinol (THC) levels across wide geographic areas. There are few peer-reviewed surveys of cannabinoid concentrations in regulated products. Those that have been done have not characterized the effects of differences in analytical methodology, sample population, and storage conditions. Viridis Laboratories, which operates two cannabis safety compliance facilities in Michigan, has analyzed over 34,000 cannabis products throughout 2021 and 2022 before the sale in the regulated market. Fifteen cannabinoids in cannabis flower, concentrates, and infused products were tested using methanolic extraction and analysis by high-performance liquid chromatography with diode-array detection. Methods were validated before use, and the flower analysis procedure was certified by the Association of Analytical Collaboration. All the samples were tested before submission for sale and therefore had not undergone prolonged storage. The results are compared with those seen in other states as well as in the illicit market. Total THC levels in cannabis flower from the regulated market are significantly higher than those seen in illicit products. The distribution of cannabinoid levels is similar in flowers intended for either the medicinal or adult-use markets, with an average potency of 18%–23% of total THC. Total THC in concentrates averages up to 82%. Other cannabinoids are observed at significant levels, mostly in products specifically formulated to contain them. These results may act as a benchmark for potency levels in the regulated market.  相似文献   

12.
The accuracy of a quantitative analysis is highly dependent on the quality of the reference standard. Although reference standards are more and more supplied with a certificate, laboratories may feel the need for additional acceptance testing. In general, confirmation of the purity of many solid reference substances can be obtained by a number of simple tests. However, verification of the true content of reference solutions may be complicated. A number of problems with the THC quantitation caused our interest for a verification method for the THC reference solution. The quantitation of THC is performed by gas chromatography with flame ionisation detector. The effective carbon number concept was used to predict GC/FID response factors. Equations and data are presented to calculate theoretical response ratios of cannabinoids. The experimental data for CBD and CBN were in excellent agreement with the theoretical ones. The paper shows that the response factors of CBD and/or CBN can be used for the calculation of the THC content of either reference solutions or cannabis samples.  相似文献   

13.
The analysis of 35,312 cannabis preparations confiscated in the USA over a period of 18 years for delta-9-tetrahydrocannabinol (delta9-THC) and other major cannabinoids is reported. Samples were identified as cannabis, hashish, or hash oil. Cannabis samples were further subdivided into marijuana (loose material, kilobricks and buds), sinsemilla, Thai sticks and ditchweed. The data showed that more than 82% of all confiscated samples were in the marijuana category for every year except 1980 (61%) and 1981 (75%). The potency (concentration of delta9-THC) of marijuana samples rose from less than 1.5% in 1980 to approximately 3.3% in 1983 and 1984, then fluctuated around 3% till 1992. Since 1992, the potency of confiscated marijuana samples has continuously risen, going from 3.1% in 1992 to 4.2% in 1997. The average concentration of delta9-THC in all cannabis samples showed a gradual rise from 3% in 1991 to 4.47% in 1997. Hashish and hash oil, on the other hand, showed no specific potency trends. Other major cannabinoids [cannabidiol (CBD), cannabinol (CBN), and cannabichromene (CBC)] showed no significant change in their concentration over the years.  相似文献   

14.
The 4- Aminophenol (4-AP) colorimetric test is a fast, easy-to-use, and cost-effective presumptive assay of cannabis plant material producing different chromophores with THC-rich cannabis (blue color) and with CBD-rich cannabis (pink color). The main drawback of the 4-AP test is a brief observation window where the color rapidly changes to black, limiting the utility of the test. We now report for the first time, the identification of the product chromophores between 4-AP and CBD/THC as well as propose an explanation and a solution for the color degradation of the chromophores. The identification of the chromophores is provided by spectroscopic (UV–Vis), chromatography, and mass spectrometry (TLC and LC-QToF-MS). Oxidation of excess 4-AP (Reagent A) in the presence of NaOH (Reagent B) produces the black color observed for the previously reported 4-AP tests and reported in the literature. The adjustment of reactants concentrations and volumes of 4-AP:THC/CBD to a 1:1 ratio significantly reduces the black oxidation by-product and increases the observation window up to 2 h instead of the previously reported 5–10 min. For the first time, mass spectrometry and chromatography confirmed that the reaction of THC and CBD with 4-AP produced chromophores with m/z (M + H) = 420, consistent with proposed indophenol structures. The TLC method developed confirmed the separation between CBD and THC chromophores. The specificity of the test is also reported, showing false positive results for the presence of THC (blue color) for samples of thyme and oregano. LDA and SIMCA models showed that the optimized 4-AP procedure performs better than the previously reported 4-AP color test.  相似文献   

15.
The EMIT d.a.u. cannabinoid assay of methanolic extracts of blood was found to be usable as a screening method in cases of suspected impairment by cannabis, when delta-9-tetrahydrocannabinol (THC) was analysed in the subsequent assay. A prerequisite is that the blood sample is taken some time after cannabis smoking. When a cut-off limit corresponding to 50 nM delta-9-tetrahydrocannabinol carboxylic acid (17 ng/ml) was used, 86% of the EMIT positive blood samples contained THC concentrations above the cut-off limit of 1 nM (0.3 ng/ml). A high EMIT result gave a high probability of finding a high THC concentration in the subsequent confirmation analysis.  相似文献   

16.
An LC/MS/MS procedure to determine THC along with its major metabolites 11-OH-THC, THC-COOH and its glucuronide as well as the cannabinoids CBD and CBN was applied to 5 post mortem cases to study their distribution into some less commonly studied matrices. Analytes were determined in fluids and tissue homogenates following protein precipitation and liquid-liquid extraction. Gall bladder fluid exhibited maximum concentrations of all analytes except THC, which was detectable in high concentrations in muscle tissue along with CBD. THC was also present in lung specimens, whereas its concentration in liver samples was low or not detectable at all. Liver und kidney specimens contained appreciable amounts of THC-COOglu. Findings from bile support extensive enterohepatic recirculation of the glucuronide. Muscle tissue seems an interesting specimen to detect multiple cannabis use, and brain may serve as an alternative specimen for blood; nevertheless, the present findings should be substantiated by further investigations.  相似文献   

17.
Cannabis products have been administered for many centuries; today, cannabis is the most widely used illegal drug all over the world. Nevertheless, the interpretation of cannabis findings in blood with regard to consumption behaviour and/or estimating the elapsed time since the last cannabis use is still a very challenging task. A wide variation of pharmacokinetic parameters has been observed even in experimental studies. Different chemical structures of precursors, smoking dynamics, pyrolysis of phytocannabinoids and frequency of drug use affect the amount of THC absorbed. Polymorphic enzymes are involved in phase-I-metabolism of THC. Pharmacological effects of other cannabinoids or medication on the pharmacokinetics of THC have not yet been studied in detail. Hydrolysis of cannabis conjugates may occur during storage of blood samples and processing of specimens for analysis; knowledge on the stability of cannabinoids in forensic specimens is still poor. Whether determination of cannabinoid conjugates may be useful is a matter of further consideration. At present, the broad variation of pharmacokinetic parameters and the limiting factors discussed in the present paper should be taken into account when using data from experimental studies for interpretation of analytical results in forensic case work.  相似文献   

18.
Fifty-three head hair specimens were collected from 38 males with a history of cannabis use documented by questionnaire, urinalysis and controlled, double blind administration of delta9-tetrahydrocannabinol (THC) in an institutional review board approved protocol. The subjects completed a questionnaire indicating daily cannabis use (N=18) or non-daily use, i.e. one to five cannabis cigarettes per week (N=20). Drug use was also documented by a positive cannabinoid urinalysis, a hair specimen was collected from each subject and they were admitted to a closed research unit. Additional hair specimens were collected following smoking of two 2.7% THC cigarettes (N=13) or multiple oral doses totaling 116 mg THC (N=2). Cannabinoid concentrations in all hair specimens were determined by ELISA and GCMSMS. Pre- and post-dose detection rates did not differ statistically, therefore, all 53 specimens were considered as one group for further comparisons. Nineteen specimens (36%) had no detectable THC or 11-nor-9-carboxy-THC (THCCOOH) at the GCMSMS limits of quantification (LOQ) of 1.0 and 0.1 pg/mg hair, respectively. Two specimens (3.8%) had measurable THC only, 14 (26%) THCCOOH only, and 18 (34%) both cannabinoids. Detection rates were significantly different (p<0.05, Fishers' exact test) between daily cannabis users (85%) and non-daily users (52%). There was no difference in detection rates between African-American and Caucasian subjects (p>0.3, Fisher's exact test). For specimens with detectable cannabinoids, concentrations ranged from 3.4 to >100 pg THC/mg and 0.10 to 7.3 pg THCCOOH/mg hair. THC and THCCOOH concentrations were positively correlated (r=0.38, p<0.01, Pearson's product moment correlation). Using an immunoassay cutoff concentration of 5 pg THC equiv./mg hair, 83% of specimens that screened positive were confirmed by GCMSMS at a cutoff concentration of 0.1 pg THCCOOH/mg hair.  相似文献   

19.
For the reliable quantification of Δ9-tetrahydrocannabinolic acid A (THCA-A), the biogenetic precursor of Δ9-tetrahydrocannabinol (THC), in biological matrices by LC-MS/MS and GC-MS(/MS), an isotopically labeled internal standard was synthesized starting from Δ9-tetrahydrocannabinol-D(3) (THC-D(3)). Synthesis strategy was based on a method reported by Mechoulam et al. in 1969 using magnesium methyl carbonate (MMC) as carboxylation reagent for the synthesis of cannabinoid acids. Preliminary experiments with THC to optimize yield of the product (THCA-A) resulted in the synthesis of the positional isomer tetrahydrocannabinolic acid B (THCA-B) as a byproduct. Using the optimized conditions for the desired isomer, THCA-A-D(3) was prepared and isolated with a yield of approx. 10% after two synthesis cycles. Isotope purity was estimated to be >99% by relative abundance of the molecular ions. The synthesized compound proved to be suitable as an internal standard for quantification of THCA-A in serum and hair samples of cannabis consumers.  相似文献   

20.
In Algeria, large quantities of hashish are seized every year. This study aimed to investigate the total content of major cannabinoids in the illicit seized hashish in Algeria over an 8-year period (2011–2018) in order to establish the chemical profile of North African hashish. A total of 3265 hashish samples were analyzed using a validated high-performance liquid chromatography–diode array detection (HPLC-DAD) method, allowing the simultaneous quantification of both the acidic and the neutral forms of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN). The results revealed a slight upward trend in the mean THC content, from 7.0% in 2011 to 9.4% in 2018, with an overall mean value of 8.4%. The overall means of CBD and CBN content were 3.5% and 0.8%, respectively. The number of high-potency hashish samples gradually increased to reach 6% in 2018. Two distinct hashish chemotypes were identified: the highly populated chemotype II, corresponding to the traditional medium-potency hashish ([THC + CBN]/CBD ~ 2.16), and chemotype I, containing hashish samples of relatively high THC levels and low levels of CBD (ratio ~ 4.90). Both chemotypes I and II were characterized in the ternary plot, and the proportions (THC:CBD:CBN) were about 85%:13%:2% and 60%:35%:5%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号