首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 954 毫秒
1.
This study involved the comparative analysis and discrimination of 964 architectural paint samples collected in the United States and Canada. The samples were evaluated to determine the extent to which randomly collected architectural finishes can be discriminated following standard operating protocols for paint analysis. The study also provides a basis for assessing the significance of a result in which a pair or group are undifferentiated. The techniques utilized were stereomicroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with both backscatter electron imaging (BSI) and energy dispersive spectroscopy (EDS), and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). To assess the layer characteristics (e.g., number, color, sequence, thickness), stereomicroscopy was used with FTIR and/or SEM as needed. The use of visual and microscopic evaluations in concert with FTIR resulted in 42 undifferentiated pairs, a discrimination of 99.99%. Adding SEM and Py-GC/MS analysis resulted in further discrimination of 31 pairs, resulting in eleven undiscriminated pairs of samples. At the conclusion of the study, samples that remained undifferentiated proved to originate from the same source. Therefore, no random pairs were indistinguishable at the conclusion of all examinations.  相似文献   

2.
This study involved the comparative analysis and discrimination of 90 electrical tape adhesives. The objectives included the evaluation of the ability of individual techniques to discriminate samples and the assessment of the ability of the techniques combined to distinguish samples. The techniques utilized were stereomicroscopy, Fourier transform infrared spectroscopy (FTIR), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). Stereomicroscopy, to assess adhesive colors of black, clear/colorless, and clear adhesives with brown tint, resulted in a discrimination of 53%. FTIR analysis yielded eight distinct groups with a discrimination of 67%. Py-GC/MS analysis resulted in 16 groups with a discrimination of 83%. These analyses confirmed and further subdivided the FTIR groups. SEM/EDS resulted in five separate groups at 17% discrimination, increasing the overall discrimination to above 85%.  相似文献   

3.
This population study was conducted to assess the frequency of physical, microscopical, and chemical properties of automotive paint chips. Population studies of trace evidence provide valuable analytical data for criminalists to assess evidentiary significance. Two‐hundred automotive paint chips were collected from auto body shops from the Northeastern United States. All samples were analyzed using stereomicroscopy, brightfield, and polarized light microscopy. Red paints were targeted for further analysis using a sequence of modern instrumental techniques commonly used by forensic paint examiners: Fourier‐transform infrared (FT‐IR), Raman, and ultraviolet–visible (UV–Vis) microspectroscopy. The discrimination potential of each analytical method was evaluated by inter‐comparing the paint samples. Results demonstrated that macroscopic and microscopic properties were able to differentiate 99.995% of the population (one undifferentiated pair out of 19,900). When combined with either FT‐IR or UV–Vis microspectroscopy, all paints were differentiated. The results of this research lead to the conclusion that one would not expect to encounter two indistinguishable paint chips originating from different sources during the investigation of a single event.  相似文献   

4.
Improvements in printing technology have exacerbated the problem of document counterfeiting, prompting the need for analytical techniques that better characterize inks for forensic analysis and comparisons. In this study, 319 printing inks (toner, inkjet, offset, and Intaglio) were analyzed directly on the paper substrate using scanning electron microscopy‐energy dispersive spectroscopy (SEM‐EDS) and Laser Ablation‐Inductively Coupled Plasma‐Mass Spectrometry (LA‐ICP‐MS). As anticipated, the high sensitivity of LA‐ICP‐MS pairwise comparisons resulted in excellent discrimination (average of ~ 99.6%) between different ink samples from each of the four ink types and almost 100% correct associations between ink samples known to originate from the same source. SEM‐EDS analysis also resulted in very good discrimination for different toner and intaglio inks (>97%) and 100% correct association for samples from the same source. SEM‐EDS provided complementary information to LA‐ICP‐MS for certain ink types but showed limited utility for the discrimination of inkjet and offset inks.  相似文献   

5.
Architectural paints are commonly found as trace evidence at scenes of crime. Currently the most widely used technique for the analysis of architectural paints is Fourier Transformed Infra-Red Spectroscopy (FTIR). There are, however, limitations to the forensic analysis of white paints, and the ability to discriminate between samples.Isotope ratio mass spectrometry (IRMS) has been investigated as a potential tool for the analysis of architectural white paints, where no preparation of samples prior to analysis is required. When stable isotope profiles (SIPs) are compared, there appears to be no relationship between paints from the same manufacturer, or between paints of the same type. Unlike existing techniques, IRMS does not differentiate resin samples solely on the basis of modifier or oil-type, but exploits additional factors linked to samples such as geo-location where oils added to alkyd formulations were grown. In combination with the use of likelihood ratios, IRMS shows potential, with a false positive rate of 2.6% from a total of 1275 comparisons.  相似文献   

6.
The knowledge of the discriminating power of analytical techniques used for the differentiation of writing inks can be useful when interpreting results. Ultraviolet-visible (UV-VIS) spectrophotometry, thin layer chromatography (TLC), and diffuse reflectance Fourier transform infrared spectroscopy (FT-IR) were used to examine a population of 21 black and 12 blue ballpoint writing inks. Based on corroborative results of these methods, the discrimination power for UV-VIS, TLC, and FT-IR was determined to be 100% and 98% for the black and blue inks, respectively. Generally, TLC and UV-VIS can be used to differentiate the colorant components (i.e., dyes and some pigments) found in inks. As FT-IR can be utilized to identify some of the noncolorant components, it was determined to be an excellent complementary technique that can be implemented into an analytical scheme for ink analysis.  相似文献   

7.
The backings of 90 black electrical tapes were analyzed to evaluate the chemical components of these films, the ability of individual techniques to discriminate samples, and the ability of the techniques combined to distinguish samples. The techniques utilized and their respective discrimination results were stereomicroscopy and physical measurements, to include observation of surface features of the backing, width, and thickness measurements (c. 64%); Fourier transform infrared spectroscopy (FTIR) using a microscope accessory (c. 83%); pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS; c. 81%); and scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS; c. 87%). Ninety-four percent of the backings were discriminated through this combination of analytical methods. Finally, evaluating these results in conjunction with previously published data on the analysis of the adhesives from the same set of electrical tapes provided an overall discrimination of nearly 96%.  相似文献   

8.
Direct identification of copper phthalocyanine (CuPc) and chlorinated CuPcs in paints for discrimination between blue automobile paints by means of laser desorption mass spectrometry (LDMS) in the absence of a matrix is reported. The models consisted of eight commercially available CuPc pigments applied to a piece of plain white coating paper. The relationship between the peak intensity at m/z 575 of the CuPc, the number of pulsed laser shots, and laser power was compared to optimize laser abrasion. LDMS analysis of the model paints demonstrated that all characteristic components of the CuPc pigments in the paint films were in good agreement with those in the powder pigments. Further, the chlorinated CuPcs in the paint films could be distinguished. A quantity of 42 blue paint films, representing the paints used for painting Japanese domestic trucks, was examined by LDMS analysis. Results indicate that the paints can be classified into four categories based on the chlorinated CuPc components of the paints. Therefore, LDMS spectra of CuPc pigments would be useful for the identification of paints in forensic investigations. Herein, we report the successful identification of the CuPcs in a paint smear on the frame of a bicycle damaged in a hit-and-run accident, using the LDMS spectra.  相似文献   

9.
Bismuth oxychloride (BiOCl) was the first viable synthetic pearl pigment developed 50 years ago. It was only used for a limited time period in automotive paint (model years 1998–2000), serving to produce luster for a single Chrysler black metallic color. Identification of this pigment in an unknown automotive paint can thus facilitate determination of the vehicle of origin. Bismuth oxychloride imparts effects similar to those produced by silver/white mica pearlescent pigments, and such a pigment was used together with bismuth oxychloride in at least one original equipment manufacturer (OEM) basecoat. Silver/white micas are now used primarily in white pearl tricoat systems. This article describes the identification of bismuth oxychloride and silver/white mica pearlescent pigments in automotive finishes using FT‐IR spectroscopy, X‐ray fluorescence (XRF) spectrometry, and SEM/EDS analysis. Data for some cadmium pigments, which were used in automotive paint several decades ago, are also presented as they produce infrared absorptions similar to that of bismuth oxychloride.  相似文献   

10.
《Science & justice》2014,54(1):71-80
Hyperspectral imaging (HSI) is a useful technique in the examination of writing inks, including gel pen inks, which combines digital imaging with % reflectance spectroscopy. This facilitates the detection of subtle differences between chemically similar inks. This study analysed a variety of blue, red and black gel inks on white office paper using HSI. The potential of the technique for ink discrimination compared to other analytical methods of examination is highlighted. Discriminating powers of 1.00, 0.90 and 0.40 were achieved using HSI for red, blue and black gel inks respectively. The overall discriminating power of 0.76 for the technique combined with its non-destructive nature and minimal sampling requirements demonstrates promise for this type of application.  相似文献   

11.
Micro‐Raman spectroscopy was applied to forensic identification of pigments in paint chips and provided differentiation between paint samples. Sixty‐six blue automotive paint samples, 26 solid and 40 metallic were examined. It was found that the majority of the collected Raman spectra provided information about the pigments present. However, in some cases, fluorescence precluded pigment identification. Using laser excitation at longer wavelengths or pretreatment to effect photobleaching often resulted in reduced fluorescence, particularly for solid color samples, and allowed pigment identification. The examined samples were compared pairwise taking into account number, location, and intensity of absorption bands in their infrared spectra. The estimated discrimination power ranged from 97% for solid paint samples to 99% for metallic paint samples.  相似文献   

12.
Fire investigation is a challenging area for the forensic investigator. The aim of this work was to use spectral changes to paint samples to estimate the temperatures to which a paint has been heated. Five paint samples (one clay paint, two car paints, one metallic paint, and one matt emulsion) have been fully characterized by a combination of attenuated total reflectance Fourier transform infrared (ATR‐IR), Raman, X‐ray fluorescence spectroscopy and powder X‐ray diffraction. The thermal decomposition of these paints has been investigated by means of ATR‐IR and thermal gravimetric analysis. Clear temperature markers are observed in the ATR‐IR spectra namely: loss of ν(C = O) band, >300°C; appearance of water bands on cooling, >500°C; alterations to ν(Si–O) bands due to dehydration of silicate clays, >700°C; diminution of ν(CO3) and δ(CO3) modes of CaCO3, >950°C. We suggest the possible use of portable ATR‐IR for nondestructive, in situ analysis of paints.  相似文献   

13.
A simple system of pyrolysis capillary gas chromatography has been used to improve discrimination and long-term reproducibility in the analysis of polymers particularly alkyd based paints typically encountered in forensic casework. This involved the coupling of a Pye Curie-point pyrolyser to the inlet port of a capillary gas chromatograph operated in the splitless mode. Examples of pyrograms demonstrating improved differentiation of alkyd paints, and also examples of other architectural and automotive paints, automobile rubbers, adhesives, polyurethane foams and fibres are shown.  相似文献   

14.
The performance of synchrotron radiation X‐ray fluorescence (SR‐XRF) spectrometry for nondestructive discrimination of small fragments of automotive aluminum wheels was studied. Fragments (< 500 × 500 μm2) of 45 kinds of wheels were first analyzed by scanning electron microscopy–energy dispersive spectroscopy (SEM‐EDS) and then by SR‐XRF. Despite the Mg/Al intensity ratio being a useful identification index, SEM‐EDS was not efficient enough because of the absence of other meaningful indicators of comparison. Conversely, pairwise comparison was conducted and a 92.9% identification was achieved via SR‐XRF using 18‐keV X‐rays. Trace heavy elements in the high‐energy region were detected by SR‐XRF using 116‐keV X‐rays, and an 82.9% identification was obtained. Combined use of 18‐ and 116‐keV X‐rays allowed 98.2% identification. Hence, SR‐XRF is a powerful tool for nondestructive discrimination of automotive aluminum wheels with high precision using trace elements in a wide energy region.  相似文献   

15.
Blood detection and identification at crime scenes are crucial for harvesting forensic evidence. Unfortunately, most tests for the identification of blood are destructive and time consuming. We present a fast and nondestructive identification test for blood, using noncontact reflectance spectroscopy. We fitted reflectance spectra of 40 bloodstains and 35 nonbloodstains deposited on white cotton with spectroscopic features of the main compounds of blood. Each bloodstain was measured 30 times to account for aging effects. The outcome of the blood measurements was compared with the reflectance of blood-mimicking stains and various body fluids. We found that discrimination between blood and nonblood deposited on white cotton is possible with a specificity of 100% and a sensitivity of 98%. In conclusion, a goodness of fit between the sample's reflectance and the blood component fit may allow identification of blood at crime scenes by remote spectroscopy.  相似文献   

16.
Raman spectroscopy has been applied to characterize fiber dyes and determine the discriminating ability of the method. Black, blue, and red acrylic, cotton, and wool samples were analyzed. Four excitation sources were used to obtain complementary responses in the case of fluorescent samples. Fibers that did not provide informative spectra using a given laser were usually detected using another wavelength. For any colored acrylic, the 633‐nm laser did not provide Raman information. The 514‐nm laser provided the highest discrimination for blue and black cotton, but half of the blue cottons produced noninformative spectra. The 830‐nm laser exhibited the highest discrimination for red cotton. Both visible lasers provided the highest discrimination for black and blue wool, and NIR lasers produced remarkable separation for red and black wool. This study shows that the discriminating ability of Raman spectroscopy depends on the fiber type, color, and the laser wavelength.  相似文献   

17.
《Science & justice》2022,62(4):433-447
The forensic scenario, on which the round robin study was based, simulated a suspected intentional manipulation of a real estate rental agreement consisting of a total of three pages. The aims of this study were to (i) establish the amount and reliability of information extractable from a single type of evidence and to (ii) provide suggestions on the most suitable combination of compatible techniques for a multi-modal imaging approach to forgery detection. To address these aims, seventeen laboratories from sixteen countries were invited to answer the following tasks questions: (i) which printing technique was used? (ii) were the three pages printed with the same printer? (iii) were the three pages made from the same paper? (iv) were the three pages originally stapled? (v) were the headings and signatures written with the same ink? and (vi) were headings and signatures of the same age on all pages? The methods used were classified into the following categories: Optical spectroscopy, including multispectral imaging, smartphone mapping, UV-luminescence and LIBS; Infrared spectroscopy, including Raman and FTIR (micro-)spectroscopy; X-ray spectroscopy, including SEM-EDX, PIXE and XPS; Mass spectrometry, including ICPMS, SIMS, MALDI and LDIMS; Electrostatic imaging, as well as non-imaging methods, such as non-multimodal visual inspection, (micro-)spectroscopy, physical testing and thin layer chromatography. The performance of the techniques was evaluated as the proportion of discriminated sample pairs to all possible sample pairs. For the undiscriminated sample pairs, a distinction was made between undecidability and false positive claims. It was found that none of the methods used were able to solve all tasks completely and/or correctly and that certain methods were a priori judged unsuitable by the laboratories for some tasks. Correct results were generally achieved for the discrimination of printer toners, whereas incorrect results in the discrimination of inks. For the discrimination of paper, solid state analytical methods proved to be superior to mass spectrometric methods. None of the participating laboratories deemed addressing ink age feasible. It was concluded that correct forensic statements can only be achieved by the complementary application of different methods and that the classical approach of round robin studies to send standardised subsamples to the participants is not feasible for a true multimodal approach if the techniques are not available at one location.  相似文献   

18.
The rise in improved and widely accessible printing technology has resulted in an interest to develop rapid and minimally destructive chemical analytical techniques that can characterize printing inks for forensic document analysis. Chemical characterization of printing inks allows for both discrimination of inks originating from different sources and the association of inks originating from the same source. Direct analysis in real‐time mass spectrometry (DART‐MS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR) were used in tandem to analyze four different classes of printing inks: inkjets, toners, offset, and intaglio. A total of 319 samples or ~ 80 samples from each class were analyzed directly on a paper substrate using the two methods. DART‐MS was found to characterize the semi‐volatile polymeric vehicle components, while ATR‐FTIR provided chemical information associated with the bulk components of these inks. Complimentary data results in improved discrimination when both techniques are used in succession resulting in >96% discrimination for all toners, 95% for all inkjets, >92% for all offset, and >54% for all intaglio inks.  相似文献   

19.
Red spray paints from different European suppliers were characterised to determine the discriminating power of a sequence of analysing techniques. A total of 51 red spray paints were analysed with the help of three techniques: (1) optical microscopy, (2) Fourier transform infrared spectrometry and (3) X-ray fluorescence. Infrared spectra were classified according to binder type, filler and pigment composition and a searchable spectral library was created. Due to the difference in the elemental composition of spray paints, a further discrimination was possible. The microscopic analysis was not taken into consideration for classification purposes. The structure of the substrate under a paint coating strongly affects the surface characteristics of this spray paint. Together with the spectral library, a database of information of spray paints was build.  相似文献   

20.
Forensic interest in adhesive tapes with polyvinyl chloride (PVC) backings (electrical tape) derives from their use in a variety of illicit activities. Due to the range of physical characteristics, chemical compositions, and homogeneity within a single roll of tape, traditional microscopic and chemical analyses can offer a high degree of discrimination between tapes, permitting the assessment of potential associations between evidentiary tape samples. The carbon isotope ratios of tapes could provide additional discrimination among tape samples. To evaluate whether carbon isotope ratios may be able to increase discrimination of electrical tapes, particularly with regards to different rolls of tape of the same product, we assessed the δ(13)C values of backings from 87 rolls of PVC-based black electrical tape (~20 brands, >60 products) Prior to analysis, adhesives were removed to prevent contamination by adhering debris, and plasticizers were extracted because of concern over their potential mobility. This result is consistent with each of these tapes having approximately the same plasticizer δ(13)C value and proportion of carbon in these plasticizers. The δ(13)C values of the 87 PVC tape backings ranged between -23.5 and -41.3 (‰, V-PDB), with negligible carbon isotopic variation within single rolls of tape, yet large variations among tape brands and tape products. Within this tape population, carbon isotope ratios permitted an average exclusion power of 93.7%, using a window of +/-0.3‰; the combination of carbon isotope ratio measurement with additional chemical and physical analyses raises the discrimination power to over 98.9%, with only 41 out of a possible 3741 pairs of tape samples being indistinguishable. There was a linear relationship between the δ(13)C value of tape backings and the change in δ(13)C value with the extraction of plasticizers. Analyses of pre- and post-blast tape sample pairs show that carbon isotope signatures are within 0.3‰ of pre-blast values, indicating that carbon isotope values are largely preserved during an explosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号