首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organic peroxide explosive triacetone triperoxide (TATP) is regularly encountered by law enforcement agents in various stages of its production, storage, or usage. In a previous study, it has been demonstrated that isolated, rigorously purified, TATP may degrade to form a series of chlorinated acetones when directly treated with excess concentrated hydrochloric acid. The current study extends this work to examine whether this phenomenon may be measured during the more feasible scenario of aging of rudimentarily purified TATP contaminated with trace reaction mixture. It was demonstrated that solid-phase microextraction gas chromatography/mass spectrometry analyses of aged TATP that was synthesized utilizing hydrochloric acid catalyst may identify the presence of the degradation products chloroacetone and 1,1-dichloroacetone. Upon aging of TATP synthesized utilizing either sulfuric or nitric acid catalyst, no acid specific degradation products could be identified. These findings may be exploited by forensic chemists in the analyses of TATP samples.  相似文献   

2.
Contamination of canine training aids is a pervasive issue that may lead to incorrect canine discrimination of target odors. It is therefore important to properly store training materials to maintain their integrity and efficiency. First, this study demonstrated the potential for contamination using GloGerm™ as a proxy for odor/particulate transfer. Then, eight types of containers were evaluated to determine (1) the ability to prevent odor permeation and (2) the likelihood of maintaining the ab/adsorbed odor. Lastly, a longitudinal study evaluated how the permeation of the target odor changed over time. Analysis occurred using a direct analysis in real-time mass spectrometer (DART-MS) to detect triacetone triperoxide (TATP) from the non-hazardous canine training aid known as the polymer odor capture-and-release (POCR) system. Results showed that Mylar and Opsak bags were most effective for short-term storage, maintaining low levels of ab/adsorption. Over time, the amount of TATP permeating through the primary containers and collecting in a secondary container (i.e., outer packaging) increased at 1 week and decreased thereafter (up to 4 months). The amount of TATP collecting in the primary containers, however, increased up to 1 month and decreased thereafter.  相似文献   

3.
The organic peroxide explosive triacetone triperoxide (TATP) is regularly encountered by law enforcement agents in various stages of its production. This study utilizes solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) to examine sulfuric acid-, hydrochloric acid-, and nitric acid-catalyzed TATP syntheses during the initial 24 h of these reactions at low temperatures (5-9°C). Additionally, aging of the reaction mixtures was examined at both low and ambient temperatures (19-21°C) for a further 9 days. For each experiment, TATP could be readily identified in the headspace above the reaction mixture 1 h subsequent to the combination of reagents; at 24 h, TATP and diacetone diperoxide (DADP) were prominent. TATP degraded more rapidly than DADP. Additionally, chlorinated acetones chloroacetone and 1,1,-dichloroacetone were identified in the headspace above the hydrochloric acid-catalyzed TATP reaction mixture. These were not present when the catalyst was sulfuric acid or nitric acid.  相似文献   

4.
A series of experiments were performed to evaluate and document the effect of a TASER (“stun gun”) on triacetone triperoxide (TATP), an easily manufactured explosive used often in IEDs and suicide bombing vests. TATP samples were synthesized and subjected to several tests of their sensitivity. These samples were run through a BAM Friction test with a result of <0.5 N, Impact Test with a result of 5.8 ± 0.4 cm, and Electrostatic Discharge test with a result of 0.073 ± 0.018 J. In addition, TATP was shocked with a TASER in a variety of configurations. The TATP reacted in 17/17 tests when the TASER arced through the TATP and 0/4 times when the TATP was configured in such a way that the TATP was not subjected to the electrical arc. Based on the experimental data, TATP will readily explode in a variety of configurations by a TASER or similar device. Testing should be expanded, as the data presented here are limited to a single formulation of TATP. Just one of a large array of TASER‐like devices by a single manufacturer were tested; other devices, scenarios and formulations of TATP and other likely threat materials should be assessed.  相似文献   

5.
Studying links between triacetone triperoxide (TATP) samples from crime scenes and suspects can assist in criminal investigations. Isotope ratio mass spectrometry (IRMS) and gas chromatography (GC)‐IRMS were used to measure the isotopic compositions of TATP and its precursors acetone and hydrogen peroxide. In total, 31 TATP samples were synthesized with different raw material combinations and reaction conditions. For carbon, a good differentiation and a linear relationship were observed for acetone–TATP combinations. The extent of negative (δ13C) fractionation depended on the reaction yield. Limited enrichment was observed for the hydrogen isotope (δ2H) values of the TATP samples probably due to a constant exchange of hydrogen atoms in aqueous solution. For oxygen (δ18O), the small isotopic range and excess of water in hydrogen peroxide resulted in poor differentiation. GC‐IRMS and IRMS data were comparable except for one TATP sample prepared with high acid concentration demonstrating the potential of compound‐specific isotope analysis. Carbon IRMS has practical use in forensic TATP investigations.  相似文献   

6.
Abstract:  Chemicals containing multiple peroxide functionalities, such as triacetone triperoxide (TATP), diacetone diperoxide (DADP), or hexamethylene triperoxide diamine (HMTD), can be explosive. They are impractical and are not used by legitimate military groups because they are shock and heat sensitive compared to military explosives. They are attractive to terrorists because synthesis is straightforward, requiring only a few easily obtained ingredients. Physical removal of these synthesis products is highly hazardous. This paper discusses methods to degrade peroxide explosives chemically, at room temperature. A number of mixtures containing metals (e.g., zinc, copper) and metal salts (e.g., zinc sulfate, copper chloride) were found effective, some capable of destroying TATP solutions in a few hours. Strong acids proved useful against solid peroxide materials; however, on a 1 g scale, addition of concentrated sulfuric acid caused TATP to detonate. Thus, this technique should only be used to destroy small-laboratory quantities.  相似文献   

7.
This study extends previous work on the sorption of explosives to the hair matrix. Specifically, we have studied the interaction of 2,4,6-trinitrotoluene (TNT) and triacetone triperoxide (TATP) as a function of chemical pretreatment with acetonitrile, neutral and alkaline hydrogen peroxide, methanolic KOH and potassium permanganate, and the morphological changes that accompany these treatments. While differences in vapor pressure can account for quantitative differences between TNT and TATP sorption, both are markedly affected by the chemical rinses. Examination of the hair surface shows different degrees of smoothening following rinsing, suggesting that the attachment to hair is largely a surface phenomenon involving the 18-methyleicosanoic acid lipid layer. Density functional theory calculations were employed to explore possible nucleation sites of TATP microcrystals on the hair. We conclude that some of the sites on melanin granular surfaces may support nucleation of TATP microcrystals. Moreover, the calculations support the experimental finding that dark hair adsorbs explosives better than light hair.  相似文献   

8.
Conventional explosives 2,4,6-trinitrotoluene (TNT), nitroglycerin (NG), and ethylene glycol dinitrate (EGDN) sorbed to hair can be directly detected by an ion mobility spectrometer (IMS) in E-mode (for explosives). Terrorist explosive, triacetone triperoxide (TATP), difficult to detect by IMS in E-mode, was detected in N-mode (for narcotics). Three modes of sample introduction to IMS vapor desorption unit were used: (i) placement of hair directly into the unit, (ii) swabbing of hair and placement of swabs (i.e., paper GE-IMS sample traps) into the unit, and (iii) acetonitrile extracts of hair positioned on sample traps and placed into the unit. TNT, NG, and EGDN were detected in E-mode by all three sample introduction methods. TATP could only be detected by the acetonitrile extraction method after exposure of the hair to vapor for 16 days because of lower sensitivity. With standard solutions, TATP detection in E-mode required about 10 times as much sample as EGDN (3.9 mug compared with 0.3 mug). IMS in N-mode detected TATP from hair by all three modes of sample introduction.  相似文献   

9.
A mixture of explosives was analyzed by gas chromatography (GC) linked to ultraviolet (UV) spectrophotometry that enabled detection in the range of 178–330 nm. The gas‐phase UV spectra of 2,4,6‐trinitrotoluene (TNT), 2,4‐dinitrotoluene (DNT), ethylene glycol dinitrate (EGDN), glycerine trinitrate (NG, nitroglycerine), triacetone triperoxide (TATP), and pentaerythritol tetranitrate (PETN) were successfully recorded. The most interesting aspect of the current application is that it enabled simultaneous detection of both the target analyte and its decomposition products. At suitable elevated temperatures of the transfer line between the GC instrument and the UV detector, a partial decomposition was accomplished. Detection was made in real time and resulted in overlaid spectra of the mother compound and its decomposition product. Hence, the presented approach added another level to the qualitative identification of the explosives in comparison with traditional methods that relies only on the detection of the target analyte. As expected, the decomposition product of EGDN, NG, and PETN was NO, while TATP degraded to acetone. DNT and TNT did not exhibit any decomposition at the temperatures used.  相似文献   

10.
The improvised explosive triacetone triperoxide (TATP) was synthesized and characterized by 1H-nuclear magnetic resonance (NMR), 13C-NMR, Raman and infrared (IR) spectroscopy. Triacetone triperoxide was subsequently analyzed by ion mobility spectrometry (IMS) in positive ion mode, and detected as a cluster of three peaks with a drift time of the most intense peak at 13.06 ms. Triacetone triperoxide was then analyzed after dissolution in toluene, where a dramatic increase in peak intensity was observed, at a flight time of 12.56 ms (K0=2.71 cm2V(-1)s(-1)). Triacetone triperoxide was subsequently analyzed by coupling the ion mobility spectrometer to a triple quadrupole mass spectrometer, where a single peak at m/z of 223 atomic mass units identified the species present in the ion mobility spectra as being triacetone triperoxide.  相似文献   

11.
An HPLC-APCI-MS(/MS) method for the (trace) analysis of the most commonly encountered peroxide explosives, hexamethylenetriperoxidediamine (HMTD) and triacetonetriperoxide (TATP), has been developed. With this method, HMTD and TATP have been analyzed in the same run. (Pseudo-)molecular ions of these peroxides have been obtained as base peak under the same condition. A series of product ions was produced from these pseudo-molecular ions ([HMTD - 1]+ and [TATP + NH4]+) in the MS/MS analysis. We also pioneered in showing that a TATP molecular ion [TATP + H]+ can be observed with HPLC-MS/MS. The limit of detection for HMTD and TATP was 0.26 and 3.3 ng, respectively, on column by HPLC-MS in the Full Scan mode and 0.08 and 0.8, respectively, by HPLC-APCI-MS/MS in Selected Reaction Monitoring (single mass unit) mode. The method presented has been applied successfully for the identification of peroxides in the bulk solid state (powder sample), as well as in post-blast extracts originating from a forensic case. For the post-blast extracts, the use of tandem MS has been shown clearly to be of crucial importance for the identification and detection of the peroxide explosives.  相似文献   

12.
The application of isotopic techniques to investigations requiring the provision of evidence to a Court is limited. The objective of this research was to investigate the application of light stable isotopes and isotope ratio mass spectrometry (IRMS) to solve complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques.Due to the current threat of organic peroxide explosives, such as triacetone triperoxide (TATP), research was undertaken to determine the potential of IRMS to differentiate samples of TATP that had been manufactured utilising different starting materials and/or manufacturing processes. In addition, due to the prevalence of pentaerythritoltetranitrate (PETN) in detonators, detonating cord, and boosters, the potential of the IRMS technique to differentiate PETN samples from different sources was also investigated.Carbon isotope values were measured in fourteen TATP samples, with three definite groups appearing in the initial sample set based on the carbon data alone. Four additional TATP samples (in a second set of samples) were distinguishable utilising the carbon and hydrogen isotopic compositions individually, and also in combination with the oxygen isotope values. The 3D plot of the carbon, oxygen and hydrogen data demonstrated the clear discrimination of the four samples of TATP. The carbon and nitrogen isotope values measured from fifteen PETN samples, allowed samples from different sources to be readily discriminated.This paper demonstrates the successful application of IRMS to the analysis of explosives of forensic interest to assist in discriminating samples from different sources. This research represents a preliminary evaluation of the IRMS technique for the measurement of stable isotope values in TATP and PETN samples, and supports the dedication of resources for a full evaluation of this application in order to achieve Court reportable IRMS results.  相似文献   

13.
Despite numerous instrumental achievements, canines are still considered the most effective field method for explosive detection. However, due to strict explosive regulations and safety requirements, it can be a challenge for agencies with "bomb dogs" to train using neat explosive materials. This establishes a need for non-explosive canine training aids with the same volatile component profiles as the explosives that they represent. In order to compare mimic materials to their explosive counterparts, a technique must be established that not only allows for identification of volatile compounds but also can monitor changes in the headspace profile over time with respect to time and temperature. The Automated Training Aid Simulation using SPME (or ATASS) was developed for that purpose. As described, ATASS was used to observe changes in the volatile profile of three explosives (Composition C-4, 2,4-dinitrotoluene (DNT), and triacetone triperoxide (TATP)) and respective prototype training materials (0.1% by mass C-4, 1% by mass 2,4-DNT, and 1% by mass TATP). Samples were prepared in vials and metal tins within a gallon (≈ 3785 mL) paint can to simulate common field techniques for canine training. Monitoring these materials in real time provides a better understanding of the major volatile components present and how the relative abundances of these components can change over time. The results presented indicate that ATASS successfully allows for a sufficient comparison between explosive and non-explosive training materials.  相似文献   

14.
The method of sample recovery for trace detection and identification of explosives plays a critical role in several criminal investigations. After bombing, there can be difficulties in sending big objects to a laboratory for analysis. Traces can also be searched for on large surfaces, on hands of suspects or on surfaces where the explosive was placed during preparatory phases (e.g. places where an IED was assembled, vehicles used for transportation, etc.).In this work, triacetone triperoxide (TATP) was synthesized from commercial precursors following reported methods. Several portions of about 6 mg of TATP were then spread on different surfaces (e.g. floors, tables, etc.) or used in handling tests. Three different swabbing systems were used: a commercial swab, pre-wetted with propan-2-ol (isopropanol) and water (7:3), dry paper swabs, and cotton swabs wetted with propan-2-ol. Paper and commercial swabs were also used to sample a metal plate, where a small charge of about 4 g of TATP was detonated. Swabs were sealed in small glass jars with screw caps and Parafilm® M and sent to the laboratory for analysis. Swabs were extracted and analysed several weeks later by gas chromatography/mass spectrometry. All the three systems gave positive results, but wetted swabs collected higher amounts of TATP. The developed procedure showed its suitability for use in real cases, allowing TATP detection in several simulations, including a situation in which people wash their hands after handling the explosive.  相似文献   

15.
This study examines the sorption of eight explosives (2,4,6-trinitrotoluene [TNT]; pentaerythritol tetranitrate [PETN]; hexahydro-1,3,5-trinitro-s-triazine [RDX]; diacetone diperoxide [DADP]; triacetone triperoxide [TATP]; ethylene glycol [EGDN], nitroglycerin [NG]; and 2,4-dinitrotoluene [DNT]) to human hair. The study uses only cut hair, which is exposed to explosive vapor. The vapor transfer studies reported herein indicated that hair did not reach saturation even after 2.5 years of exposure to TNT. While previous studies showed black hair sorbed more explosive than blond or brown, this study reports that red hair sorption is similar to black, while grey hairs, exposed along with black hair from the same individual, sorbed significantly less explosive than the same individual's black hairs. In a study using only black hair, a slight racial bias was observed with sorption greater for Mongoloid hair as compared to Caucasian or Negroid. Only for Mongoloid hairs were enough samples studied to examine for a gender bias, but one was not observed. There was much variability in results in all categories (hair color, race, and gender) that trends were established only in general terms. Hair at different ages was tested for a few individuals. Detailed studies focused on the sorption of TATP and TNT as these appear to be sorbed most differently-TATP mainly on the hair surface and TNT both on the surface and in the cortex. The uptake of high vapor pressure explosives (e.g., TATP) and moderate vapor pressure explosives (e.g., TNT) by hair was rapid and could be detected within about 1 h of exposure. Both explosives were readily sorbed by pure melanin.  相似文献   

16.
Commercially available skin cleansing alcohol wipes and conventional swabs were investigated for their use as a universal sampling medium for the simultaneous collection of both organic and inorganic explosive residues. Six compounds with the potential to be encountered in casework [pentaerythritol tetranitrate (PETN), 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), triacetone triperoxide (TATP), ammonium nitrate, and sodium chlorate] were selected as representative target compounds. Quantities of these target compounds were deposited on four different substrates (glass, plastic, aluminium foil and laminate). Two chosen alcohol wipes demonstrated better overall performance in the recovery of both the organic and inorganic representative compounds from each of the test surfaces compared to the results obtained using conventional cotton and polyester swabs, pre-moistened with various solvents, and a direct methanol wash (used as a control). Results obtained using dry cotton swabs indicated that it was not an effective swabbing system for the collection of both organic and inorganic explosive residues on common substrates.  相似文献   

17.
Improved method for the detection of TATP after explosion   总被引:3,自引:0,他引:3  
TATP in post explosion exhibits was reported earlier to be best recovered from vapor phase. A typical procedure includes its adsorption on Amberlite XAD-7, elution with acetonitrile and analysis by GC/MS. In this work, improved recovery of TATP from the vapor phase was achieved by SPME using PDMS/DVB fiber and immediate sampling to GC/MS. The recovery of TATP by SPME was compared with headspace and with adsorption on Amberlite XAD-7 by spiking onto filter paper put in a 100 mL beaker. The limit of detection of TATP was 6.4 ng in these conditions, few orders magnitude more than in the other tested methods. Recovery of TATP in the presence of various solvents was also studied. Acetone, water, and mixtures of water:alcohols (1:1) were found to reduce the recovery of TATP. Using SPME, TATP has been identified in dozens of post-explosion cases.  相似文献   

18.
Stability of raw TATP (3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane) samples in solutions of common solvents was studied to highlight problems faced by forensic labs in identification and analysis of organic peroxide samples. The TATP samples were prepared by reaction of acetone and hydrogen peroxide (30%) with the aid of following catalysts: hydrochloric, sulfuric, nitric, perchloric and methanesulfonic acid. Acetone, acetonitrile, methanol and acetonitrile/water solutions of TATP samples were prepared and stored at 50°C. Various degrees of stability were observed for particular combination of catalyst and solvent ranging from totally unstable (catalyst-H(2)SO(4)/any solvent) to very stable (catalyst-HCl/solvent acetonitrile). Purification of crude TATP by re-crystallization results in product stable in all investigated solvents. Stability of solution prepared from re-crystallized DADP (3,3,6,6-tetramethyl-1,2,4,5-tetroxane) was found to be on the same level as the stability of solution of re-crystallized TATP.  相似文献   

19.
The sorption of explosives (TNT, RDX, PETN, TATP, EGDN) to hair during exposure to their vapors is examined. Three colors of hair were simultaneously exposed to explosive vapor. Following exposure of hair, the sorbed explosive was removed by extraction with acetonitrile and quantified. Results show that sorption of explosives, via vapor diffusion, to black hair is significantly greater than to blond, brown or bleached hair. Furthermore, the rate of sorption is directly related to the vapor density of the explosive: EGDN > TATP >TNT > PETN > RDX. In some cases, the explosive-containing hair was subject to repeated washings with sodium dodecylsulfate or simply left out in an open area to determine the persistence of the explosive contamination. While explosive is removed from hair with time or washing, some persists. These results indicate that hair can be a useful indicator of explosive exposure/handling.  相似文献   

20.
The small-scale explosivity device (SSED) has been used to assess the explosive power of a number of low explosives-smokeless powders (WC-870, Red Dot, Bullseye, Winchester Action Pistol, and IMR-PB), Pyrodex, black powder, and an improvised explosive (TATP). The device requires 2 g of energetic material, a heavy-walled containment vessel, and a standard blast shield to permit use in most laboratories. The data from the SSED are compared with the fragmentation of pipe bombs which contained 300 to 700 g of powder. The SSED provided the same relative ordering of explosivity as suggested by the fragmentation of the real devices. In addition, the SSED was used to evaluate the chemical residue remaining after an explosion. Issues in using the device such as optimal detonators and restricted reaction volume were probed using three high explosives--TNT, Tetryl, and RDX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号