首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifty-three head hair specimens were collected from 38 males with a history of cannabis use documented by questionnaire, urinalysis and controlled, double blind administration of delta9-tetrahydrocannabinol (THC) in an institutional review board approved protocol. The subjects completed a questionnaire indicating daily cannabis use (N=18) or non-daily use, i.e. one to five cannabis cigarettes per week (N=20). Drug use was also documented by a positive cannabinoid urinalysis, a hair specimen was collected from each subject and they were admitted to a closed research unit. Additional hair specimens were collected following smoking of two 2.7% THC cigarettes (N=13) or multiple oral doses totaling 116 mg THC (N=2). Cannabinoid concentrations in all hair specimens were determined by ELISA and GCMSMS. Pre- and post-dose detection rates did not differ statistically, therefore, all 53 specimens were considered as one group for further comparisons. Nineteen specimens (36%) had no detectable THC or 11-nor-9-carboxy-THC (THCCOOH) at the GCMSMS limits of quantification (LOQ) of 1.0 and 0.1 pg/mg hair, respectively. Two specimens (3.8%) had measurable THC only, 14 (26%) THCCOOH only, and 18 (34%) both cannabinoids. Detection rates were significantly different (p<0.05, Fishers' exact test) between daily cannabis users (85%) and non-daily users (52%). There was no difference in detection rates between African-American and Caucasian subjects (p>0.3, Fisher's exact test). For specimens with detectable cannabinoids, concentrations ranged from 3.4 to >100 pg THC/mg and 0.10 to 7.3 pg THCCOOH/mg hair. THC and THCCOOH concentrations were positively correlated (r=0.38, p<0.01, Pearson's product moment correlation). Using an immunoassay cutoff concentration of 5 pg THC equiv./mg hair, 83% of specimens that screened positive were confirmed by GCMSMS at a cutoff concentration of 0.1 pg THCCOOH/mg hair.  相似文献   

2.
In this study, we investigated the patterns of cannabis users (n=412) according to their sex, age, and the results of urinalysis and hair analysis, and classified the concentrations of THCCOOH in hair into three categories to examine the levels of cannabis use. We also compared the concentrations of THCCOOH in hair root, hair without the hair root and whole hair and examined the relationship among them according to the results of urinalysis. The hair samples were washed, digested with 1ml of 1M NaOH at 85°C for 30min and extracted with 2ml of n-hexane:ethyl acetate (9:1) two times after adding 1ml of 0.1N sodium acetate buffer (pH 4.5) and 200μl of acetic acid. The final mixture was derivatized with 50μl of PFPA and 25μl of PFPOH for 30min at 70°C. The solution was evaporated, and the residue was reconstituted in 40μl of ethyl acetate and transferred to an autosampler vial. One microlitre was injected into the GC/MS/MS-NCI system. The concentrations of THCCOOH ranged from 0.06 to 33.44pg/mg (mean 2.96; median 1.32) in hair from cannabis users who had positive urine results and ranged from 0.05 to 7.24pg/mg (mean 1.35; median 0.37) in hair from cannabis users who had negative urine results. The average concentration of THCCOOH in hair from cannabis users who had positive urine results was higher than that from cannabis users who had negative urine results. Male cannabis users in their forties were predominant. We classified the concentrations of THCCOOH in hair into three groups (low, medium and high), and could use the grouping of THCCOOH in hair as a guide for determining the level of use. The low, medium and high concentration ranges for THCCOOH in hair were 0.05-0.24, 0.25-2.60 and 2.63-33.44pg/mg, respectively. We also investigated 28 hair samples with the root. The highest concentrations of THCCOOH were seen in the hair root from 18 out of the 28 hair samples. The average concentrations of THCCOOH in hair root, hair without hair root and whole hair from cannabis users who had positive urine results were higher than those who had negative urine results.  相似文献   

3.
In this study, the concentrations of 11-nor-Δ(9)-tetrahydrocannabinol-9-carboxylic acid (THCCOOH) in pubic, axillary and beard hair were measured and the correlation between the concentrations of THCCOOH in head and pubic hair from same cannabis users were evaluated. The papers on body hair analysis for THCCOOH were rarely found although police officers submit body hair as a complimentary specimen to forensic laboratories in case cannabis users had no hair. Head, pubic, axillary, and beard hair were collected. All hair samples were cut into 0.5mm segments and decontaminated with methanol, digested with 1 mL of 1M NaOH at 85 °C for 30 min and extracted in 2 mL of n-hexane:ethyl acetate (9:1) two times after adding 1 mL of 0.1N sodium acetate buffer (pH = 4.5) and 200 μL of acetic acid followed by derivatization with 50 μL of PFPA and 25 μL of PFPOH for 30 min at 70 °C. The extracts were analyzed using gas chromatography tandem mass spectrometry operating in negative chemical ionization mode (GC/MS/MS-NCI). We determined the concentrations of THCCOOH in both pubic and head hair. The concentrations of THCCOOH in pubic hair were higher than those in head hair. We also evaluated the concentrations of THCCOOH in body hair (pubic, axillary and beard hair) and head hair according to the positive/negative urine test results. There was no statistically significant difference in the concentrations of THCCOOH in head and body hair according to urine results.  相似文献   

4.
A gas chromatography-negative ion chemical ionization tandem mass spectrometric (GC-NCI-MS/MS) method was developed and validated for the determination of 11-nor-Δ(9)-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) in human hair. After decontamination, hair samples were weighed (25mg), mechanically pulverized with a bead mill, and incubated in 0.7 mL of 1.0M sodium hydroxide at 95 °C for 30 min. Bead-assisted liquid-liquid extraction was performed with n-hexane:ethyl acetate (9:1, v/v), a method developed in our laboratory. The extract was evaporated to dryness, derivatized with pentafluoropropanol and pentafluoropropionic anhydride, and analyzed by GC-MS/MS in the negative ion chemical ionization mode using methane as the reagent gas. The linear ranges were 0.05-10.0 pg/mg for THC-COOH with the coefficient of determination (r(2) = 0.9976). The intra-day and inter-day precisions were within 1.7 and 13.8%, respectively. The intra-day and inter-day accuracies were -4.8 to 10.0% and -3.9 to 3.8%, respectively. The limit of detection and quantification were 0.015 and 0.05 pg/mg, respectively. The recoveries were in the range of 79.4-87.1%. The results indicate that the proposed method is simple, rapid, accurate, and precise for determination of THC-COOH in hair. The method identified THC-COOH in hair specimens from suspected marijuana abusers.  相似文献   

5.
目的 建立同时检测头发中△9-四氢大麻酚(THC)、大麻酚(CBN)、大麻二酚(CBD)和△9-四氢大麻酸(THC-COOH)的分析方法.方法头发样品加入氘代内标△9-四氢大麻酸(THC-COOH-d3),经碱水解后,以混合溶剂[V(正己烷)∶V(乙酸乙酯=9∶1]进行提取,吹干,残留物经双(三甲基硅烷基)三氟乙酰胺(BSTFA)衍生化,用GC-MS/MS方法进行分析.结果 头发中THC-COOH、THC、CBN和CBD的最低检出限分别为4、4、10和20 pg· mg-1,各化合物在0.04~5ng· mg-1呈良好的线性关系(r>0.999),方法精密度、准确度均符合要求.结论本方法选择性强、灵敏度高,适用于头发中CBD、CBN、THC及其代谢物THC-COOH的分析,并成功应用于实际案例中.  相似文献   

6.
A liquid chromatography-tandem mass spectrometry (LC-MSMS) target screening in 50mg hair was developed and fully validated for 35 analytes (Δ9-tetrahidrocannabinol (THC), morphine, 6-acetylmorphine, codeine, methadone, fentanyl, amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, benzoylecgonine, cocaine, lysergic acid diethylamide, ketamine, scopolamine, alprazolam, bromazepam, clonazepam, diazepam, flunitrazepam, 7-aminoflunitrazepam, lorazepam, lormetazepam, nordiazepam, oxazepam, tetrazepam, triazolam, zolpidem, zopiclone, amitriptyline, citalopram, clomipramine, fluoxetine, paroxetine and venlafaxine). Hair decontamination was performed with dichloromethane, and incubation in 2 mL of acetonitrile at 50°C overnight. Extraction procedure was performed in 2 steps, first liquid-liquid extraction, hexane:ethyl acetate (55:45, v:v) at pH 9, followed by solid-phase extraction (Strata-X cartridges). Chromatographic separation was performed in AtlantisT3 (2.1 mm × 100 mm, 3 μm) column, acetonitrile and ammonium formate pH 3 as mobile phase, and 32 min total run time. One transition per analyte was monitored in MRM mode. To confirm a positive result, a second injection monitoring 2 transitions was performed. The method was specific (no endogenous interferences, n=9); LOD was 0.2-50 pg/mg and LOQ 0.5-100 pg/mg; linearity ranged from 0.5-100 to 2000-20,000 pg/mg; imprecision <15%; analytical recovery 85-115%; extraction efficiency 4.1-85.6%; and process efficiency 2.5-207.7%; 27 analytes showed ion suppression (up to -86.2%), 4 ion enhancement (up to 647.1%), and 4 no matrix effect; compounds showed good stability 24-48 h in autosampler. The method was applied to 17 forensic cases. In conclusion, a sensitive and specific target screening of 35 analytes in 50mg hair, including drugs of abuse (THC, cocaine, opiates, amphetamines) and medicines (benzodiazepines, antidepressants) was developed and validated, achieving lower cut-offs than Society of Hair Testing recommendations.  相似文献   

7.
The incorporation of propyphenazone in beard hair after consumption of this substance present in the analgesic Migraine-Kranit (Codali) was investigated. Because of a migraine attack a volunteer took four tablets of Migraine-Kranit (one tablet contains 150 mg propyphenazone) the first day and two tablets the second day. Shaved beard hair was collected 48, 72, 96 and 120 h after the first consumption of the analgesic drug. These hair specimens were washed (acetone and water), pulverized and then incubated during 2 h in a thioglycolic solution. After solid-phase extraction on C18 columns, propyphenazone was assayed in these extracts by GC/MS operating in selected ion monitoring mode (m/z 230, 215). Diazepam-d5 was used as an internal standard. In hair specimen 1 (48 h after consumption) the highest concentration was found (170 pg/mg hair). In hair specimen 2 (72 h) and 3 (96 h) the concentration were significantly lower (44 and 18 pg/mg, respectively). After 120 h no propyphenazone could be detected (limit of detection: 5 pg/mg hair). These results show that propyphenazone was already in beard hear 2 days after consumption, whereas no more presence could be shown after 120 h. As the time period of 2 days is too short to allow entrapment into the hair matrix from bloodstream and growing of hair out of the follicle, our results suggest that incorporation of propyphenazone may be mainly due to excretion in sweat and subsequent incorporation into the hair.  相似文献   

8.
目的采用液-液萃取、衍生化和GC/MS、GC/NPD方法,进行毛发中氯胺酮定性定量分析。方法选择4-苯基丁胺为内标,毛发样本用NaOH、HCl及芳基硫酸酯酶/β-葡萄糖醛酸酶等3种方式进行水解,再进行衍生化后,采用GC/MS和GC/NPD方法定性定量分析。对不同水解和衍生化条件以及提取溶剂进行比较优化,并考察方法精密度、稳定性和检出限。结果方法的提取回收率大于95%,精密度和样品稳定性良好,日内和日间标准偏差小于6%;采用GC/NPD和GC/MS直接分析毛发中的氯胺酮,检出限为0.2ng/mg和2.0ng/mg,线性范围为10.0~250.0ng/mg,相关系数均大于0.99;采用酰化衍生化后分析,GC/NPD和GC/MS检出限分别提高至0.1ng/mg和0.2ng/mg。结论该方法回收率高、检测限低,可以用于毛发中氯胺酮的定性定量分析检验。  相似文献   

9.
A method for the sensitive and selective determination of ethyl glucuronide (EtG) in hair has been developed using solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Washed and cut hair segments were extracted by ultrasonication (3h, 50 degrees C) and the extracts were cleaned-up with aminopropyl SPE columns. LC-MS/MS analysis was performed using a polar-endcapped phenyl-hexyl-RP-phase with negative mode electrospray ionisation (ESI) using a triple quadrupole mass spectrometer (Sciex API 365) with a turboionspray source and post-column addition of acetonitrile for enhanced sensitivity. The MS/MS transitions monitored were m/z 221 -->75 for EtG and 226 -->75 for D(5)-EtG as an internal standard. The method was selective and sensitive, with a detection limit of 51 pg/mg hair at a signal-to-noise ratio of 3:1. The mean recovery was 96%, with an intra- and inter-day precision of less than 11.7% at a concentration of 200 pg/mg. The linearity was assessed in the range of 25-2000 pg/mg hair, with a correlation coefficient of 0.997. The method was successfully applied to 97 human hair samples which were taken at autopsies from persons with known alcoholism or were obtained from alcoholics who were hospitalized for ethanol withdrawal, from social drinkers and from children having not consumed any alcohol. Although, approximately two-third of the alcoholics showed EtG concentrations in hair of higher than 51 pg/mg (up to >4000 pg/mg), in one-third the EtG concentration was below the detection limit. However, only in one of five hair samples of "social drinkers", the EtG concentration was above the detection limit (51 pg/mg). No EtG has been detected in the hair of children. These investigations demonstrate that heavy alcohol consumption may be but not necessarily has to be detectable by EtG analysis in hair.  相似文献   

10.
A rapid and sensitive method using LC-MS/MS triple stage quadrupole for the determination of traces of amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"), 3,4-methylenedioxyethamphetamine (MDEA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in hair, blood and urine has been developed and validated. Chromatography was carried out on an Uptisphere ODB C(18) 5 microm, 2.1 mm x 150 mm column (Interchim, France) with a gradient of acetonitrile and formate 2 mM pH 3.0 buffer. Urine and blood were extracted with Toxitube A (Varian, France). Segmented scalp hair was treated by incubation 15 min at 80 degrees C in NaOH 1M before liquid-liquid extraction with hexane/ethyl acetate (2/1, v/v). The limits of quantification (LOQ) in blood and urine were at 0.1 ng/mL for all analytes. In hair, LOQ was <5 pg/mg for MA, MDMA, MDEA and MBDB, at 14.7 pg/mg for AP and 15.7 pg/mg for MDA. Calibration curves were linear in the range 0.1-50 ng/mL in blood and urine; in the range 5-500 pg/mg for MA, MDMA, MDEA and MBDB, and 20-500 pg/mg for AP and MDA. Inter-day precisions were <13% for all analytes in all matrices. Accuracy was <20% in blood and urine at 1 and 50 ng/mL and <10% in hair at 20 and 250 pg/mg. This method was applied to the determination of MDMA in a forensic case of single administration of ecstasy to a 16-year-old female without her knowledge during a party. She suffered from hyperactivity, sweating and agitation. A first sample of urine was collected a few hours after (T+12h) and tested positive to amphetamines by immunoassay by a clinical laboratory. Blood and urine were sampled for forensic purposes at day 8 (D+8) and scalp hair at day 60 (D+60). No MDMA was detected in blood, but urine and hair were tested positive, respectively at 0.42 ng/mL and at 22 pg/mg in hair only in the segment corresponding to the period of the offence, while no MDA was detectable. This method allows the detection of MDMA up to 8 days in urine after single intake.  相似文献   

11.
The use of a drug to modify a person's behaviour for criminal gain is not a recent phenomenon. However, the recent increase in reports of drug-facilitated crimes (sexual assault, robbery) has caused alarm by the general public. Among the drugs that can be used, alprazolam (Xanax), an anxiolytic benzodiazepine, has been seldom observed. To document two cases involving this drug, we have developed an approach based on hair testing by LC-MS/MS. After pH 8.4 buffer incubation and extraction with methylene chloride/diethyl ether (80/20, v/v), hair extracts were separated on a XTerra MS C18 column using a gradient of acetonitrile and formate buffer. Alprazolam and diazepam-d5, used as internal standard, were detected by electrospray tandem mass spectrometry. In the first criminal case, alprazolam tested positive in two consecutive 2 cm hair segments at 4.9 and 2.4 pg/mg, from a 12-year-old girl, assaulted by her father who had sedated her three or four times. In the other case, alprazolam was detected in four consecutive 1cm hair segments at 3.1-0.4 pg/mg, obtained from an adolescent who had been forced to prostitute herself.  相似文献   

12.
The use of a drug to modify a person's behaviour for criminal gain is not a recent phenomenon. However, the recent increase in reports of drug-facilitated crimes (sexual assault, robbery) has caused alarm in the general public. The drugs involved can be difficult to detect due to low dosages or chemical instability. They possess amnesic properties and can be quickly cleared from the body fluids. In these situations, blood or even urine can be of poor interest. This is the reason why this laboratory developed an original approach based on hair testing by LC-MS/MS. Zopiclone (Imovane), due to its short half-life associated with rapid hypnotic activity, is considered as a compound of choice to sedate victims. To document the detection of zopiclone in hair, we first tested specimens obtained from two volunteers who had ingested a single 7.5 mg Imovane tablet, and from repetitive consumers of zopiclone. After pH 8.4 buffer incubation and extraction with methylene chloride/diethyl ether (80/20 (v/v)), hair extracts were separated on a Xterra MS C18 column using a gradient of acetonitrile and formate buffer. Zopiclone and diazepam-d5, used as internal standard, were detected by tandem mass spectrometry. A single exposure to zopiclone was detectable in the first hair segment of two volunteers at concentration of 5.4 and 9.0 pg/mg, respectively. Hair from repetitive consumers tested positive for zopiclone at concentrations of 37 and 66 pg/mg. Hair analysis was applied to two authentic criminal cases. In the first one, zopiclone tested positive in the corresponding hair segment at 4.2 pg/mg, in accordance with a single exposure to the drug. In the other expertise, zopiclone was detected in the two segments analyzed, at 21.3 and 21.5 pg/mg, making unlikely the hypothetical single exposure to zopiclone.  相似文献   

13.
The quantitative analysis of 11-nor-D(9)-tetrahydrocannabinol-9-carboxylic acid (THCCOOH) in hair requires a sensitive method to detect a low-pg level. Before applying the method to real hair samples, the method was validated; in this study, we examined the uncertainty obtained from around the cut-off level of THCCOOH in hair. We calculated the measurement uncertainty (MU) of THCCOOH in hair as follows: specification of the measurand, identification of parameters using "cause and effect" diagrams, quantification of the uncertainty contributions using three factors, the uncertainty of weighing the hair sample, the uncertainty from calibrators and the calibration curve, and the uncertainty of the method precision. Finally, we calculated the degrees of freedom and the expanded uncertainty (EU). The concentration of THCCOOH in the hair sample with its EU was (0.60 ± 0.1) × 10(-4)ng/mg. The relative uncertainty percent for the measurand 0.60 × 10(-4)ng was 9.13%. In this study, we also selected different concentrations of THCCOOH in real hair samples and then calculated the EU, the relative standard uncertainty (RSU) of the concentration of THCCOOH in the test sample [u(r)(c0)], the relative uncertainty percent, and the effective degree of freedom (v(eff)). When the concentrations of THCCOOH approached the cut-off level, u(r)(c0) and the relative uncertainty percent increased but absolute EU and v(eff) decreased.  相似文献   

14.
Saliva or "oral fluid" has been presented as an alternative matrix to document drug use. The non-invasive collection of a saliva sample, which is relatively easy to perform and can be achieved under close supervision, is one of the most important benefits in a driving under the influence situation. Moreover, the presence of Delta9-tetrahydrocannabinol (THC) in oral fluid is a better indication of recent use than when 11-nor-Delta9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) is detected in urine, so there is a higher probability that the subject is experiencing pharmacological effects at the time of sampling. In the first part of the study, 27 drug addicts were tested for the presence of THC using the OraLine IV s.a.t. device to establish the potential of this new on-site DOA detection technique. In parallel, oral fluid was collected with the Intercept DOA Oral Specimen Collection device and tested for THC by gas chromatography mass spectrometry (GC/MS) after methylation for THC (limit of quantification: 1 ng/mL). The OraLine device correctly identified nine saliva specimens positive for cannabis with THC concentrations ranging from 3 to 265 ng/mL, but remained negative in four other samples where low THC concentrations were detected by GC/MS (1-13 ng/mL). One false positive was noted. Secondly, two male subjects were screened in saliva using the OraLine and Intercept devices after consumption of a single cannabis cigarette containing 25mg of THC. Saliva was first tested with the OraLine device and then collected with the Intercept device for GC/MS confirmation. In one subject, the OraLine on-site test was positive for THC for 2 h following drug intake with THC concentrations decreasing from 196 to 16 ng/mL, while the test remained positive for 1.5 h for the second subject (THC concentrations ranging from 199 to 11 ng/mL). These preliminary results obtained with the OraLine IV s.a.t. device indicate more encouraging data for the detection of THC using on-site tests than previous evaluations.  相似文献   

15.
The Bavarian State Bureau of Investigation in Munich has the exclusive responsibility for investigation of criminal acts. One considerable expertise is that of hair analysis. According to the legal system in Germany, there is a special interest when some clients' hair tested positive for illicit drugs. An accused with a lot of drugs in his hair will be treated as a supposed addict and will be guaranteed extenuating circumstances. The instrumentation used for hair analysis is a powerful analytical tool: a Varian 3400 gas chromatograph linked to a Finnigan Tandem-MS (TSQ 700). The methanol extraction method is used for the detection of illegal drugs and metabolites: amphetamine, methamphetamine, MDA, MDMA (ecstasy), MDE, MBDB, methadone, THC, EDDP (metabolite of methadone), cocaine, benzoylecgonine, cocaethylene, opiates (dihydrocodeine, codeine, heroin, 6-monoacetylmorphine, morphine, acetylcodeine). For the detection of 9-carboxy-THC by negative chemical ionization the hair sample is hydrolyzed under alkaline conditions. Solid-phase extraction is used for clean-up. The LOQ for the determination of 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic-acid is 0.16 pg/mg hair. An unsurpassed combination for rendering an expert opinion based on hair analysis may be: a forensic expert using diligence and experience, coupled with the performance of a sophisticated analytical instrument.  相似文献   

16.
Testing for drugs in hair raises several difficulties. Among them is the interpretation of the final concentration(s). In a post‐mortem case, analyses revealed the presence of furosemide (12 ng/mL) in femoral blood, although it was not part of the victim's treatment. The prosecutor requested our laboratory to undertake an additional analysis in hair to obtain information about the use of furosemide. A specific method was therefore developed and validated to identify and quantify furosemide in hair by UHPLC‐MS/MS. After decontamination of 30 mg of hair, incubation in acidic condition, extraction with ethyl acetate, the samples were analyzed by UHPLC‐MS/MS. Furosemide was found in the victim's hair at 225 pg/mg. However, it was not possible to interpret this concentration due to the absence of data in the literature. Therefore, the authors performed a controlled study in two parts. In order to establish the basis of interpretation, several volunteers were tested (four after a single 20 mg administration and twenty‐four under daily treatment). The first part indicated that a single dose is not detectable in hair using our method. The second part demonstrated concentrations ranging from 5 to 1110 pg/mg with no correlation between dosage and hair concentrations. The decedent's hair result was interpreted as repeated exposures. In the case of furosemide analysis, hair can provide information about its presence but cannot give information about dosage or frequency of use.  相似文献   

17.
Hair of young subjects (N = 36) suspected for drug abuse was analysed for morphine, codeine, heroin, 6-acetylmorphine, cocaine, methadone, amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), and 3,4-methylenedioxyethylamphetamine (MDEA). The analysis of morphine, codeine, heroin, 6-acetylmorphine, cocaine, and methadone in hair included incubation in methanol, solid-phase extraction, derivatisation by the mixture of propionic acid anhydride and pyridine, and gas chromatography/mass spectrometry (GC/MS). For amphetamine, methamphetamine, MDA, MDMA, and MDEA analysis, hair samples were incubated in 1M sodium hydroxide, extracted with ethyl acetate, derivatised with heptafluorobutyric acid anhydride (HFBA), and assayed by GC/MS. The methods were reproducible (R.S.D. = 5.0-16.1%), accurate (85.1-100.6%), and sensitive (LoD = 0.05-0.30ng/mg). The applied methods confirmed consumption of heroin in 18 subjects based on positive 6-acetylmorphine. Among these 18 heroin consumers, methadone was found in four, MDMA in two, and cocaine in two subjects. Cocaine only was present in two, methadone only in two, methamphetamine only in two, and MDMA only in seven of the 36 subjects. In two out of nine coloured and bleached hair samples, no drug was found. Despite the small number of subjects, this study has been able to indicate the trend in drug abuse among young people in Croatia.  相似文献   

18.
A new procedure for the simultaneous detection of delta-9-tetrahydrocannabinol (THC) and its major metabolite, 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (THC-COOH) in serum has been evaluated. The method combines rapid, efficient, solid-phase extraction and simple derivatization by methylation. Analysis and quantitation is performed by gas chromatography/mass spectrometry (GC/MS) using deuterated cannabinoids as internal standards (IS). Reproducibility and sensitivity of the method are good. The procedure is applied to serum specimens collected from a smoking study with 24 volunteers and 212 forensic cases. Results are interpreted based upon the current knowledge about THC metabolism and pharmacokinetics.  相似文献   

19.
Little is known of the postmortem distribution of ?9‐tetrahydrocannabinol (THC) and its major metabolite, 11‐nor‐9‐carboxy‐?9‐tetrahydrocannabinol (THCCOOH). Data from 55 pilots involved in fatal aviation accidents are presented in this study. Gas chromatography/mass spectrometry analysis obtained mean THC concentrations in blood from multiple sites, liver, lung, and kidney of 15.6 ng/mL, 92.4 ng/g, 766.0 ng/g, 44.1 ng/g and mean THCCOOH concentrations of 35.9 ng/mL, 322.4 ng/g, 42.6 ng/g, 138.5 ng/g, respectively. Heart THC concentrations (two cases) were 184.4 and 759.3 ng/g, and corresponding THCCOOH measured 11.0 and 95.9 ng/g, respectively. Muscle concentrations for THC (two cases) were 16.6 and 2.5 ng/g; corresponding THCCOOH, “confirmed positive” and 1.4 ng/g. The only brain tested in this study showed no THC detected and 2.9 ng/g THCCOOH, low concentrations that correlated with low values in other specimens from this case. This research emphasizes the need for postmortem cannabinoid testing and demonstrates the usefulness of a number of tissues, most notably lung, for these analyses.  相似文献   

20.
A detailed procedure of an extremely sensitive method for quantitation of methamphetamine and amphetamine in human hair by gas chromatography (GC)/chemical ionization (CI) mass spectrometry (MS) is presented. N-methylbenzylamine was used as an internal standard. The samples, after extraction with an organic solvent, were derivatized with trifluoroacetic anhydride before the GC/MS analysis. Quantitation was made with quasi-molecular ions of the derivatives by selected ion monitoring in the CI mode. The detection limit was about 10 pg in an injected volume. The high sensitivity enabled us to measure both stimulants in a single human hair in actual cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号