首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An HPLC-APCI-MS(/MS) method for the (trace) analysis of the most commonly encountered peroxide explosives, hexamethylenetriperoxidediamine (HMTD) and triacetonetriperoxide (TATP), has been developed. With this method, HMTD and TATP have been analyzed in the same run. (Pseudo-)molecular ions of these peroxides have been obtained as base peak under the same condition. A series of product ions was produced from these pseudo-molecular ions ([HMTD - 1]+ and [TATP + NH4]+) in the MS/MS analysis. We also pioneered in showing that a TATP molecular ion [TATP + H]+ can be observed with HPLC-MS/MS. The limit of detection for HMTD and TATP was 0.26 and 3.3 ng, respectively, on column by HPLC-MS in the Full Scan mode and 0.08 and 0.8, respectively, by HPLC-APCI-MS/MS in Selected Reaction Monitoring (single mass unit) mode. The method presented has been applied successfully for the identification of peroxides in the bulk solid state (powder sample), as well as in post-blast extracts originating from a forensic case. For the post-blast extracts, the use of tandem MS has been shown clearly to be of crucial importance for the identification and detection of the peroxide explosives.  相似文献   

2.
Gas chromatographic analysis with electron capture detection is very sensitive to post-blast residues and useful for the determination of organic explosive molecules. But many compounds extracted from the matrices may interfere with the explosives. Using SPME, most interfering compounds are eliminated so the identification is easier. Another advantage of the technique is a low limit of detection. In this study, four different SPME fibers were tested to analyze the most common encountered organic explosives including nitro aromatics, nitramines and nitro-esters. Different parameters were tested (desorption time, agitation, ...) and a special device has been created to optimize the agitation. Direct desorption effect of the SPME fiber on the column compared to normal split-splitless injection is shown. In this way, the degradation of the most sensitive molecules is decreased. An application to a real case is also described in this paper.  相似文献   

3.
Solid-phase microextraction (SPME) has been evaluated for the recovery of explosives residues from aqueous samples and real post-explosion solid debris samples and optimized using gas chromatography with an electron capture detector (GC-ECD) and high-performance liquid chromatography with ultraviolet detection (HPLC-UV). A modified SPME/HPLC interface utilizing dual six-port valves allowed for independent optimization of SPME desorption and injection variables that provided improved chromatographic resolution and sensitivity. A unique combination of cyano and octadecyl columns resulted in the complete separation of the 14 explosives in EPA method 8330 mixture using HPLC with good quantitative results. At the optimum SPME conditions, the limits of detection (LOD) were found to be of 5 ng/mL to 16 ng/mL of explosives in water and 10 microg/kg to 40 microg/kg of explosives from soil. The technique has been successfully applied to the analysis of real post-explosion debris and can be adapted for use in the field utilizing portable chromatographic instruments.  相似文献   

4.
Forensic science practitioners are often called upon to attribute crimes using trace evidence, such as explosive remnants, with the ultimate goal of associating a crime with a suspect or suspects in order to prevent further attacks. The explosive charge is an attractive component for attribution in crimes involving explosives as there are limited pathways for acquisition. However, there is currently no capability to link an explosive charge to its source via post-blast trace residues using isotope ratios or trace elements. Here, we sought to determine if pre-blast attribution signatures are preserved after detonation and can be subsequently recovered and detected. A field study was conducted to recover samples of post-blast explosives from controlled detonations of ammonium nitrate-aluminum (AN-Al), which were then analyzed via isotope ratio mass spectrometry (IRMS) and inductively coupled plasma-mass spectrometry (ICP-MS) for quantitation and profiling of isotopes ratio and trace element signatures, respectively. Oxygen and nitrogen isotope ratios from AN-Al yielded some of the most promising results with considerable overlap within one standard deviation of the reference between the spreads of pre- and post-blast data. Trace element results from AN-Al support the findings in the isotope ratio data, with 26 elements detected in both pre- and post-blast samples, and several elements including B, Cd, Cr, Ni, Sn, V, and Zn showing considerable overlap. These preliminary results provide a proof-of-concept for the development of forensic examinations that can attribute signatures from post-blast debris to signatures in pre-blast explosive materials for use in future investigations.  相似文献   

5.
Quantification and aging of the post-blast residue of TNT landmines   总被引:4,自引:0,他引:4  
Post-blast residues are potential interferents to chemical detection of landmines. To assess the potential problem related to 2,4,6-trinitrotoluene (TNT), its post-blast residue was identified and quantified. In the first part of this study laboratory-scale samples of TNT (2 g) were detonated in a small-scale explosivity device (SSED) to evaluate the explosive power and collect post-blast residue for chemical analysis. Initiator size was large relative to the TNT charge; thus, issues arose regarding choice of initiator, residue from the initiator, and afterburning of TNT. The second part of this study detonated 75 to 150 g of military-grade TNT (typical of antipersonnel mines) in 55-gal barrels containing various witness materials (metal plates, sand, barrel walls, the atmosphere). The witness materials were analyzed for explosive residue. In a third set of tests, 75-g samples of TNT were detonated over soil (from Fort Leonard Wood or Sandia National Laboratory) in an indoor firing chamber (100 by 4.6 by 2.7 m high). Targeted in these studies were TNT and four explosive-related compounds (ERC): 2,4-dinitrotoluene (DNT), 1,3-dinitrobenzene (DNB), 2- and 4-aminodinitrotoluene (2-ADNT and 4-ADNT). The latter two are microbial degradation products of TNT. Post-blast residue was allowed to age in the soils as a function of moisture contents (5 and 10%) in order to quantify the rate of degradation of the principal residues (TNT, DNT, and DNB) and formation of the TNT microbial degradation products (2-ADNT and 4-ADNT). The major distinction between landmine leakage and post-blast residue was not the identity of the species but relative ratios of amounts. In landmine leakage the DNT/TNT ratio was usually greater than 1. In post-blast residue it was on the order of 1 to 1/100th of a percent, and the total amount of pre-blast residue (landmine leakage) was a factor of 1/100 to 1/1000 less than post-blast. In addition, landmine leakage resulted in low DNT/ADNT ratios, usually less than 1, whereas pre-blast residues started with ratios above 20. Because with time DNT decreased and ADNT increased, over a month the ratio decreased by a factor of 2. The rate of TNT degradation in soil observed in this study was much slower than that reported when initial concentrations of TNT were lower. Degradation rates yielded half-lives of 40 and 100 days for 2,4-DNT and TNT, respectively.  相似文献   

6.
An evaluation was undertaken to determine if isotope ratio mass spectrometry (IRMS) could assist in the investigation of complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. The focus of the research was on ammonium nitrate (AN), a common oxidiser used in improvised explosive mixtures.The potential value of IRMS to attribute Australian AN samples to the manufacturing source was demonstrated through the development of a preliminary AN classification scheme based on nitrogen isotopes. Although the discrimination utilising nitrogen isotopes alone was limited and only relevant to samples from the three Australian manufacturers during the evaluated time period, the classification scheme has potential as an investigative aid.Combining oxygen and hydrogen stable isotope values permitted the differentiation of AN prills from three different Australian manufacturers. Samples from five different overseas sources could be differentiated utilising a combination of the nitrogen, oxygen and hydrogen isotope values. Limited differentiation between Australian and overseas prills was achieved for the samples analysed.The comparison of nitrogen isotope values from intact AN prill samples with those from post-blast AN prill residues highlighted that the nitrogen isotopic composition of the prills was not maintained post-blast; hence, limiting the technique to analysis of un-reacted explosive material.  相似文献   

7.
Fenarimol (Rubigan) is a pyrimidine ergosterol biosynthesis inhibitor used as a systemic fungicide. The authors present a fatal fenarimol intoxication case analysed in the Forensic Toxicology Service of the National Institute of Legal Medicine. The results were used to compare two different HPLC techniques, regarding selectivity and sensitivity: an HPLC system with a diode array detector (DAD) and an HPLC system with a DAD and a mass spectrometry detector (MSD) with an electrospray interface. All biological samples were submitted to a solid-phase extraction procedure. The detection and quantification limits of fenarimol, linearity, precision and accuracy were evaluated. The fenarimol concentration levels determined were of 89.0 mg/ml in gastric contents, 1.9 mg/g in liver and 0.4 mg/g in kidney. Blood was not available at autopsy. No published data related to fenarimol self-poisoning were found, so it was not possible to interpret the results obtained by comparison with toxic/lethal levels.  相似文献   

8.
Identification particles used for the purpose of the post-blast identification of explosives have a coding system based on the combination of metal oxides and their various concentrations. These materials are composed of the polymeric matrix, iron powder (ferromagnetic properties), UV light active dyestuff and various metal oxides in a various ratios. A suitable analytical method has to be used for an accurate characterization of these metal components in the particles in order to find the required information, i.e. to determine the place and the year of production and as the case may be, also the production batch of misused explosives. In this work, the method of microwave digestion and flame atomic absorption spectrometry (F-AAS) was developed for an accurate determination of Zn, Mg, Cu and Pb in a few novel types of identification particles and applied to their characterization. When using specific sample treatment (digestion with a mixture of nitric acid with hydrochloric or hydrofluoric acid), the 3 sigma limits of detection (LODs) for the determination of Zn, Mg, Cu and Pb in 5mg original samples were 1.9, 0.2, 1.3 and 2.4 mg g(-1), respectively. The signal suppression due to the presence of HNO3+HCl or HNO3+HF was observed for Zn; therefore, the calibration solutions had to be prepared exactly with the same acids as those used for the sample mineralization. The determination of Mg, Cu and Pb was free of interferences; hence a simple calibration curve method could be adopted for attaining accurate results. The accuracy was checked by comparison of the results with those obtained by means of independent inductively coupled plasma optical emission spectrometry (ICP-OES). Good precision values, as relative standard deviation, in the range of 1-5% were obtained. A total number of 71 samples was analysed and classified by multivariate methods to prove the suitability of the procedure proposed for the purpose of the identification of explosives.  相似文献   

9.
This study presents the rapid screening of various high grade explosives by high performance liquid chromatography (HPLC) with monolithic stationary phases. Two gradient methods were developed, the first for quantitative analysis of eleven explosives: HMX; RDX; Tetryl; TNT; 2,3-DNT; 2,6-DNT; 3,4-DNT; 2-NT; 3-NT; 4-NT; and PETN in under 14 min. The second method separated seven explosives in under two min and is suitable for rapid screening to determine the presence of specific and/or class of explosive. The rapid screening methods were successfully applied to soils spiked with known amounts of target explosives. This technology showed excellent potential for forensic explosives detection and analysis.  相似文献   

10.
ABSTRACT: The widespread availability of emulsion explosives for commercial blasting has inevitably lead to their diversion for criminal misuse. Present techniques for the characterization of emulsion explosives and their residues is generally based on the detection and identification of the oxidizer and the hydrocarbon components. Use of these components is problematic for residue identification because ammonium nitrate, waxes, and oils are relatively common in the urban environment and even their co-detection does not exclude them being sourced from materials other than explosives. The detection of the emulsifier component offers increased evidential value as certain emulsifiers used in explosive formulations are manufactured for that specific use, or have limited environmental distribution. In the current study liquid chromatography-mass spectrometry (LC-MS) was utilized for the characterization of two emulsifiers in common use; ethanolamine adducts of polyisobutylene succinic anhydride and sorbitol mono-oleate (SMO). The LC-MS technique enabled the detection of both emulsifiers in preblast samples; however, only SMO was detected in postblast residues. The analysis of the hydrocarbon component by gas chromatography-mass spectrometry was achieved in the same procedure.  相似文献   

11.
The application of isotopic techniques to investigations requiring the provision of evidence to a Court is limited. The objective of this research was to investigate the application of light stable isotopes and isotope ratio mass spectrometry (IRMS) to solve complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques.Due to the current threat of organic peroxide explosives, such as triacetone triperoxide (TATP), research was undertaken to determine the potential of IRMS to differentiate samples of TATP that had been manufactured utilising different starting materials and/or manufacturing processes. In addition, due to the prevalence of pentaerythritoltetranitrate (PETN) in detonators, detonating cord, and boosters, the potential of the IRMS technique to differentiate PETN samples from different sources was also investigated.Carbon isotope values were measured in fourteen TATP samples, with three definite groups appearing in the initial sample set based on the carbon data alone. Four additional TATP samples (in a second set of samples) were distinguishable utilising the carbon and hydrogen isotopic compositions individually, and also in combination with the oxygen isotope values. The 3D plot of the carbon, oxygen and hydrogen data demonstrated the clear discrimination of the four samples of TATP. The carbon and nitrogen isotope values measured from fifteen PETN samples, allowed samples from different sources to be readily discriminated.This paper demonstrates the successful application of IRMS to the analysis of explosives of forensic interest to assist in discriminating samples from different sources. This research represents a preliminary evaluation of the IRMS technique for the measurement of stable isotope values in TATP and PETN samples, and supports the dedication of resources for a full evaluation of this application in order to achieve Court reportable IRMS results.  相似文献   

12.
Clobazam (Castillium, Urbanil), a benzodiazepine often used as an anxiolytic and in the treatment of epilepsy, is considered a relatively safe drug. The authors present a fatal case with a 49-year-old female, found dead at home. She had been undergoing psychiatric treatment and was a chronic alcoholic. The autopsy findings were unremarkable, except for multivisceral congestion, steatosis and a small piece of a plastic blister pack in the stomach. Bronchopneumonia, bronchitis and bronchiolitis were also diagnosed. Anhigh-performance liquid chromatography (HPLC)/diode array detector (DAD)/mass spectrometry detection (MSD) with electrospray method was developed in order to detect, confirm and quantify clobazam in the post-mortem samples. In the chromatographic separation, a reversed-phase column C18 (2.1 x 150 mm, 3.5 microm) was used with a mobile phase of methanol and water, at a 0.25 ml/min flow rate. Carbonate buffer (pH 10.5) and 20 microl of prazepam (100 microg/ml) as internal standard were added to the samples. A simple and reliable liquid-liquid extraction method for the determination of clobazam in post-mortem samples was described. Calibration curves for clobazam were performed in blood, achieving linearity between 0.01 and 10 microg/ml and a detection limit of 1.0 ng/ml. The clobazam concentration found in post-mortem blood was 3.9 microg/ml, higher than the reported therapeutic concentration (0.1-0.4 microg/ml). The simultaneous acquisition by photodiode array detection and mass spectrometry detection results allowed benzodiazepines to be identified with sufficient certainty. An examination of all the available information suggested that death resulted from respiratory depression due to clobazam toxicity.  相似文献   

13.
The diatoms detection has been proposed to be useful in the diagnosis of drowning. Enzymatic digestion of unfixed lung tissues and other organs with proteinase K is widely employed to detect diatoms. Handling unfixed organs or blood from the bodies with some infectious diseases could prove to be dangerous. In this study, we examined the application of enzymatic digestion for diatom detection to formalin-fixed lung obtained at autopsy. Furthermore, we assessed the effect of hydrogen peroxide on the contamination of the lung specimen with foreign bodies inhaled in the course of drowning, smoking, or air pollution. Formalin-fixed lung was heated in 0.01 M Tris–HCl buffer (pH 7.5) containing sodium dodecyl sulfate (SDS) (tissue lysis-buffer), with or without glycine. Thereafter, the lung was subjected to enzymatic digestion with proteinase K. A part of formalin-fixed or unfixed samples digested with proteinase K were incubated with hydrogen peroxide at 80 °C for 6 h or 12 h, while the residues were processed without incubation. Formalin-fixed samples heated in tissue lysis-buffer with glycine could be digested with proteinase K; further, the number and proportion of diatoms detected in both formalin-fixed and unfixed samples were observed to be similar. The results suggest that enzymatic detection of diatoms can be applied to formalin-fixed organs by heating the samples in glycine-containing tissue lysis-buffer. As the use of formalin-fixed tissue for diatom detection can decrease risk of contamination by pathogenic organisms during the course of enzymatic digestion, the method presented in this study would be beneficial, to some extent, to individuals performing diatom analysis. Moreover, our results suggest that archival organs stored in formalin solution could be available in diatom detection over a long time-period following autopsies. Clearer image of diatoms was observed in the specimen incubated with hydrogen peroxide for 6 h, in which inhaled foreign bodies were discolored, than those not subjected to incubation. Therefore, incubation of sample digested with hydrogen peroxide in the limited time would be helpful for quantitative and qualitative diatom analysis.  相似文献   

14.
《Science & justice》2014,54(1):3-21
An LTQ-Orbitrap FTMS is a new (hybrid) mass spectrometric (MS) analyzer. It allows for the acquisition of full scan MSn (n-stage fragmentations, n = 1  n) spectra with the linear ion trap detector (LTQ) at high speed and/or with the Fourier Transform-detector (Orbitrap) with ultra high mass resolution (> 60,000 at m/z < 400 amu) and high mass accuracy (≤ 1 ppm with internal calibration). In addition it may be coupled with liquid chromatography (LC) with photo diode array (PDA) detection.Two methods for the forensic screening and confirmation of all common trace explosives in post-blast residues have been developed on this instrument using atmospheric pressure chemical ionization (APCI). In one run, the nitrogen-containing explosives are analyzed with the combination of “LC-(PDA)-APCI(−)-LTQ MS2/Orbitrap FTMS” (Method 1). In another run, peroxide explosives are analyzed with “LC-APCI(+)-LTQ MS2/Orbitrap FTMS” (Method 2).The performance of both methods has been validated according to procedures defined in the EU COMMISSION DECISION implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (DC 2002/657/EC) and other standards (NEN 17025 and NEN 7777). The methods are highly selective due to the simultaneous utilization of the Orbitrap FTMS and LTQ MS2, both of which are highly selective detectors Tested explosive compounds can be detected in the molecular ion form by the Orbitrap analyzer with minimal mass interference in different matrices when using an extremely narrow mass tolerance detection window (≤ 2 ppm). The identification of a detected compound follows an identification point system. Experimental results show that almost all explosive compounds meet the confirmation criteria (minimum 4 points) required for the positive identification by the DC 2002/657/EC.  相似文献   

15.
This paper describes two analytical techniques used to separate and quantify gamma-hydroxybutyrate (GHB) and gamma-hydroxyvalerate (GHV). The first technique was a N,O-bis(trimethylsilyl)triflouro-acetimide-trimethylchlorosilane derivatization, followed by gas chromatography/mass spectrometry analysis using an HP-5 capillary column at a rate of 1.0 mL/min with a run time of 9.25 min. This technique was found to be sensitive (LOD 1 pg on column) and gave a low average error (5%) in a beverage study. When supplemented by a surrogate spike, the method yielded 97% analyte recovery from beverages. The second technique was high-performance liquid chromatography/UV (HPLC/UV) using a C-18 column with a (20:80% v/v) methanol:dibasic phosphoric buffer (10 mM, pH 3) at a rate of 1.00 mL/min with a run time of 7.5 min. UV detection occurred at 254 nm. This method was found to be less sensitive (LOD 0.05 microg on column) for direct analysis of aqueous samples. To remove interferences seen in the beverage study, a liquid-liquid extraction before HPLC analysis was tested. However, a decreased sensitivity (LOD 100 microg on column) and irreproducible peak profiles resulted.  相似文献   

16.
离子对SPE—HPLC法检测生物检材中的百草枯   总被引:8,自引:0,他引:8  
Wang RH  Su SM  Qin GM 《法医学杂志》2005,21(2):121-123
目的建立生物检材中百草枯的简便、快速、灵敏、可靠的高效液相色谱分析方法。方法生物检材酶解后,用以十二烷基三甲基溴化铵和十二烷基硫酸钠预处理过的C18固相柱萃取,HPLC/DAD进行分析。结果回收率81%~94%,检出限为1ng·mL-1,线性范围50ng·mL-1~1mg·mL-1,结论此方法适用于中毒生物检材中百草枯的检测。  相似文献   

17.
In this paper we have adapted a technique, previously used to determine the presence of urea in aqueous samples of wine and urine, to detect trace levels of urea nitrate explosives. The procedure involves the reaction of the uronium ion (protonated urea) with a fluorophore, xanthydrol. By modification of the procedure to utilize non-aqueous reagents, in neutral conditions, it can be made specific to the presence of the urea nitrate ion pair. The procedure includes selective detection of derivatization products by UV and fluorescence following separation by High-Performance Liquid Chromatography (HPLC). Analytical method development included optimization of HPLC conditions (solvent, gradient), UV and fluorescence wavelengths, and derivatization parameters (xanthydrol amount, reaction times, temperature). The extraction of urea nitrate from surfaces was also investigated and optimized. For best quantification, it was shown that an internal standard was required; this resulted in a quantification limit around 0.17mM (21mg/L). The entire procedure could be performed in less than 30min per sample and potential interferences such as ammonium, nitrate, and urea did not produce a response under standard conditions.  相似文献   

18.
高效液相色谱法测定血浆中雷公藤甲素和雷公藤酮   总被引:3,自引:0,他引:3  
目的 建立高效液相色谱法定量检测人血浆中雷公藤甲素和雷公藤酮的分析方法。方法 以Oasis HLB固相萃取柱对样品进行提取 ,应用HPLC色谱法二极管阵列检测器测定。结果 该方法的回收率高于 80 % ,线性范围在 10~ 10 0 0ng/ml ,经该方法测得雷公藤甲素的最小检出限为 3 0ng/ml,雷公藤酮的最小检出限为 4 5ng/ml(S/N≥ 3 )。结论 该方法快速灵敏、准确 ,适用于雷公藤中毒的法医学检验。  相似文献   

19.
Traditional forensic soil comparisons are performed via physical and/or chemical examinations of color, texture, and mineral content, leaving any organic- or water-soluble fractions unexamined. This study uses high-performance liquid chromatography (HPLC) and ion chromatography (IC) to assess the qualitative and quantitative variation in these fractions of soil. Soil samples (n=120) were collected over the course of 3 weeks from urban, suburban, and rural locations in and around Lansing, MI. Additional samples from six of these locations (two urban, two suburban, and two rural) were collected once a week for 10 weeks for temporal analysis. Nine additional samples, equally spaced over a 1 m(2) grid, from these same six locations were collected for spatial analyses. Qualitative and quantitative analysis of the resultant chromatograms separated the 120 samples into 10 groups by HPLC and 23 groups by IC. This study shows that using HPLC and IC to analyze the organic- and water-soluble fractions of soil can successfully discriminate samples. Quantitative analysis of the results eliminates some false inclusions by providing further differentiation of samples. The results of this study indicate that adding HPLC and IC analyses to traditional forensic soil analysis schemes can improve overall sample differentiation. The methods used in this study were also able to detect both qualitative and quantitative variations in soil over a relatively small geographic area. This demonstration of soil heterogeneity underscores the importance of the collection of a representative known sample population when assessing a forensic soil comparison. Significant temporal variation was also demonstrated over the course of 10 weeks of sampling; however, samples were found to be consistent over shorter periods of time. Baseline levels of inorganic anions were determined via IC; these levels may be useful in assessing the significance of anions detected in soil from cases involving low explosives.  相似文献   

20.
Capillary electrophoresis (CE) is used in the ATF Forensic Science Laboratories for the analysis of inorganic ions commonly encountered in post-blast residues including monomethylamine (MMA) and benzoate ions. Monomethylamine nitrate is found in Tovex, a water gel explosive. Sodium benzoate is added to Pyrodex, as a fuel and burn rate modifier. In the analysis of explosive residues, these ions are used as an indicator for the presence of Tovex and Pyrodex. Traditionally, these two ions, along with other ions of interest were analyzed by spot tests and ion chromatograph (IC). CE is currently being used in place of spot tests as a confirmation technique for IC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号