首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Saliva or "oral fluid" has been presented as an alternative matrix to document drug use. The non-invasive collection of a saliva sample, which is relatively easy to perform and can be achieved under close supervision, is one of the most important benefits in a driving under the influence situation. Moreover, the presence of Delta9-tetrahydrocannabinol (THC) in oral fluid is a better indication of recent use than when 11-nor-Delta9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) is detected in urine, so there is a higher probability that the subject is experiencing pharmacological effects at the time of sampling. In the first part of the study, 27 drug addicts were tested for the presence of THC using the OraLine IV s.a.t. device to establish the potential of this new on-site DOA detection technique. In parallel, oral fluid was collected with the Intercept DOA Oral Specimen Collection device and tested for THC by gas chromatography mass spectrometry (GC/MS) after methylation for THC (limit of quantification: 1 ng/mL). The OraLine device correctly identified nine saliva specimens positive for cannabis with THC concentrations ranging from 3 to 265 ng/mL, but remained negative in four other samples where low THC concentrations were detected by GC/MS (1-13 ng/mL). One false positive was noted. Secondly, two male subjects were screened in saliva using the OraLine and Intercept devices after consumption of a single cannabis cigarette containing 25mg of THC. Saliva was first tested with the OraLine device and then collected with the Intercept device for GC/MS confirmation. In one subject, the OraLine on-site test was positive for THC for 2 h following drug intake with THC concentrations decreasing from 196 to 16 ng/mL, while the test remained positive for 1.5 h for the second subject (THC concentrations ranging from 199 to 11 ng/mL). These preliminary results obtained with the OraLine IV s.a.t. device indicate more encouraging data for the detection of THC using on-site tests than previous evaluations.  相似文献   

2.
Low concentrations of THC and 11-hydroxy-THC in serum samples are often claimed not to result from recent cannabis use. Prediction of time of exposure is difficult, especially if distinctive features of drug use could not be observed. Therefore, the aim of the study was to investigate the presence of THC and 11-hydroxy-THC in serum samples as well as to obtain preliminary data on the analyte profile for a time window of 24-48 hours after discontinuation of cannabis smoking. Serum samples from heavy (n = 12, > 1 joint/day), moderate (n = 11, < or = 1 joint/day) and light (n = 6, < 1 joint/week) smokers of cannabis were analyzed for THC, 11-hydroxy-THC and free THC-COOH by GC/MS as well as for glucuronidated THC-COOH by LC/MS-MS. The blood samples were collected 24-48 hours after abstaining from cannabis use. Additionally, 8 specimens were obtained from persons after discontinuation of the drug for more than 48 hours. During collection of the blood samples, distinctive effects due to drug use could not be observed. For heavy users of cannabis, THC was detectable in 8 samples, and in 5 cases both biologically active compounds, THC and 11-hydroxy-THC, were present (1.3-6.4 ng THC/mL serum, 0.5-2.4 ng 11-hydroxy-THC/mL serum). Among moderate users, in 1 sample 1.8 ng THC/mL serum and 1.3 ng 11-hydroxy-THC/mL serum were determined, and another sample was tested positive with low concentrations close to the limit of detection. In serum samples of light users both analytes could not be detected, indicating that in those persons a positive finding of THC and 11-hydroxy-THC may rather result from recent consumption than from cannabis use 1 or 2 days prior to blood sampling. The concentrations of THC-COOH and its glucuronide covered a wide range in all groups of cannabis users. However, there was a trend to higher concentrations in heavy users compared to moderate users, and the mean concentration was smaller in light smokers than in moderate smokers. Overall, the findings indicated that data from pharmacokinetic studies should be supplemented by data obtained from "real-life" samples.  相似文献   

3.
Methoxetamine ((RS)2‐(3‐methoxyphenyl)‐2‐(ethylamino)cyclohexanone)) is becoming a drug of interest among practitioners of forensic toxicology. In this case report, we describe the case background, standard field sobriety tests, sampling, and analysis of this drug in a whole blood sample as well as screening methods and analysis from a driver operating under the influence of intoxicating substances. Methoxetamine was isolated from the blood sample using mixed mode solid phase extraction. After elution and evaporation, the residue was dissolved in mobile phase (consisting of acetonitrile and aqueous formic acid) for analysis by liquid chromatography–tandem mass spectrometry (LC–MS/MS) and gas chromatography–mass spectrometry (GC–MS). The case sample was found to contain clonazepam, 7‐aminoclonazepam, carboxy‐THC, Ddphenhydramine, and MDMA. The case sample was found to contain 10 ng/mL of the drug (methoxetamine) in whole blood. The results of this drug analysis and previous analyses are discussed in terms of this driver operating under the influence of drugs.  相似文献   

4.
The major psychoactive cannabinoid in marihuana, delta 9-tetrahydrocannabinol (THC) was measured in 1792 randomly selected blood specimens from erratic motorists arrested for impairment who submitted to blood alcohol sampling. Of these specimens, 14.4% were positive for THC (greater than or equal to 5.5 ng/mL). In those erratic driver specimens negative for alcohol THC positives rose to 23%. Drivers who used marihuana covered a broad age range. Aliquots of hemolyzed blood (10 microL) were analyzed by a sensitive radioimmunoassay (RIA) not requiring extraction. RIA accuracy and specificity were validated by gas liquid chromatography/mass spectroscopy (GLC/MS) split pair analysis (correlation coefficient = 0.93). This initial experience should facilitate and amplify a program designed to set forth the epidemiology of marihuana use in motorists and possible behavioral correlates.  相似文献   

5.
In mid 2009 Victoria introduced compulsory drug testing of blood taken from all injured drivers taken to hospital. Δ(9)-Tetrahydrocannabinol (THC), methylamphetamine (MA) and 3,4-methylenedioxy-methylamphetamine (MDMA) are prohibited and if drivers are positive to any amount an automatic penalty is enforced. Laboratory screens were conducted on preserved blood using ELISA testing for cannabis metabolite and methylamphetamines and a fully validated LC-MS/MS method for 105 drugs including THC, amphetamines, opioids, benzodiazepines, antidepressants and antipsychotics and a number of other psychoactive substances using a minimum of two transitions per drug. Conventional GC-testing for ethanol was used to screen and quantify the presence of alcohol. 1714 drivers were tested and showed alcohol in 29% (≥ 0.01 g/100mL) and drugs in 35%. The positive rate for the three drugs prohibited by legislation was 12.5%. The prevalence of THC, MA and MDMA was 9.8%, 3.1%, and 0.8%, respectively. The range of THC concentrations in blood was 2-42 ng/mL (median 7) of which 70% had a concentration of 10 ng/mL or higher. The range of concentrations for MA and MDMA was 0.02-0.4 and 0.03-0.3mg/L (median for both drugs was 0.05 mg/L). Drugs of any type were detected in 35% of cases. The other drugs were largely prescribed drugs such as the antidepressants (9.3%) and benzodiazepines (8.9%). Neither 6-acetylmorphine nor cocaine (or benzoylecgonine) was detected in these cases.  相似文献   

6.
A case is presented of a death caused by self-injection of sufentanil and midazolam. Biological fluids and tissues were analyzed for midazolam by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS) and for sufentanil by GC/MS. Midazolam was extracted from basified fluids or tissues homogenated with n-butyl chloride and analyzed by HPLC by using a phosphate buffer: acetonitrile (60:40) mobile phase on a mu-Bondapak C18 column at 240 nm. Sufentanil was extracted from basified fluids and tissue homogenates with hexane:ethanol (19:1). GC/MS methodology for both compounds consisted of chromatographic separation on a 15-m by 0.25-mm inside diameter (ID) DB-5 (1.0-micron-thick film) bonded phase fused silica capillary column with helium carrier (29 cm/s) splitless injection at 260 degrees C; column 200 degrees C (0.8 min) 10 degrees C/min to 270 degrees C; and electron ionization and multiple ion detection for midazolam (m/z 310), methaqualone (IS, m/z 235), sufentanil (m/z 289), and fentanyl (IS, m/z 245). Sufentanil concentrations were: blood 1.1 ng/mL, urine 1.3 ng/mL, vitreous humor 1.2 ng/mL, liver 1.75 ng/g, and kidney 5.5 ng/g. Midazolam concentrations were: blood 50 ng/mL, urine 300 ng/mL, liver 930 ng/g, and kidney 290 ng/g. Cause of death was attributed to an acute sufentanil/midazolam intoxication and manner of death a suicide.  相似文献   

7.
Researchers have studied the involvement of drugs and alcohol in fatal road traffic incidents, but with particular emphasis on the possible impairment of the driver. This paper describes a comparative study of drug and alcohol findings in various victim groups (drivers of cars, vans or lorries, car passengers, motorcyclists, motorcycle passengers, cyclists and pedestrians) between 2000 and 2006. Post-mortem blood and urine specimens submitted were analysed by immunoassay, GC–NPD, GC–FID, GC–MS and HPLC–DAD. The results of 1047 cases indicated 54% of all victims were positive for drugs and/or alcohol, with the highest percentage of positive findings occurring in pedestrians (63%). Males between the ages of 17–24 were most likely to be involved in a road traffic accident, whether being in control of a vehicle (driver) or involved indirectly (car passenger, pedestrian, motorcycle passenger). A wide range of drugs were detected (e.g. drugs of abuse, anti-convulsants, anti-histamines, anti-inflammatories, anti-psychotics, cardiac drugs and over-the-counter products), but alcohol and cannabinoids were the most frequent substances across the victim groups. When detected, alcohol was commonly above the legal driving limit in blood and urine (> 63% in those in control and > 60% not in control). Overall, the presence of drugs and/or alcohol was of similar frequency in those victims in control (55% of driver, 48% of motorcyclists, 33% of cyclists) and not in control of a vehicle (52% of car passengers, 63% of pedestrians). This degree of frequency strongly implicates the involvement of drugs and alcohol in road traffic incidents and infers an effect on driving ability and individual impairment.  相似文献   

8.
This study confirmed post-mortem ethanol concentrations in pericardial fluid and bone marrow aspirate in comparison with those in the blood in medicolegal autopsy cases (n = 140, within 48 h post-mortem). The specimens were examined by head-space gas chromatography/mass spectrometry. Ethanol concentrations in the pericardial fluid (y) were approximately equivalent to those in peripheral blood (x): y = 0.99x + 0.02, n = 44, r = 0.972. A high stomach ethanol concentration (>10 mg/ml) appeared to mildly affect the pericardial levels. There was no significant interference in drowning cases. Ethanol concentrations in bone marrow aspirates (y) also showed a good correlation with those in the peripheral blood (x): y = 0.77 x + 0.02, n = 20, r = 0.981. A dissociation was observed in cases of delayed death from hemorrhagic/traumatic shock and elderly victims. These findings suggest that pericardial fluid and bone marrow aspirate can be used as an alternative material when adequate blood specimens are not available.  相似文献   

9.
The EMIT d.a.u. cannabinoid assay of methanolic extracts of blood was found to be usable as a screening method in cases of suspected impairment by cannabis, when delta-9-tetrahydrocannabinol (THC) was analysed in the subsequent assay. A prerequisite is that the blood sample is taken some time after cannabis smoking. When a cut-off limit corresponding to 50 nM delta-9-tetrahydrocannabinol carboxylic acid (17 ng/ml) was used, 86% of the EMIT positive blood samples contained THC concentrations above the cut-off limit of 1 nM (0.3 ng/ml). A high EMIT result gave a high probability of finding a high THC concentration in the subsequent confirmation analysis.  相似文献   

10.
In the United States, federal law and many state laws differentiate between marijuana and industrial hemp through delta-9-tetrahydrocannabinol (THC) levels, whereby the latter is defined as ≤0.3 percent THC on a dry weight basis. Many traditional cannabis identification methods employed by crime laboratories cannot accurately determine total THC quantities in accordance with federal and state regulations, or do so with increased time, labor, and risks of instrument damage. In order to quickly distinguish positive marijuana samples, a method was developed to identify plant material with a total THC level >1%. This novel, automated dispersive pipette extraction (DPX) method uses tip-based technology and an automated liquid handler to enable fast, hands-free selective isolation of THC and its precursors for downstream gas chromatography–mass spectrometry (GC-MS) analysis. The workflow proceeds with no repetitive manual effort and reduced need for instrument maintenance while enabling crime labs to legally identify marijuana through the detection of total THC above 1%. Recovery of THC using the DPX extraction method was 93% at 30 µg/mL and 78% at 500 µg/mL. Similarly, THCA-A recovery was 100% at 30 µg/mL and 74% at 500 µg/mL. Samples evaluated in a blind study (proficiency, hemp, and nonprobative case samples) were all accurately identified as greater than or less than 1% THC, with samples containing <1% THC being identified as “cannabis” and subjected to more discriminative analysis as needed.  相似文献   

11.
To validate information on cannabis use, we investigated human hair and pubic hair for cannabinoids (THC and THC-COOH) by gas chromatography/mass spectrometry. Samples (100 mg approximately) were decontaminated with methylene chloride, then pulverized and dissolved in 1 ml 1 N NaOH for 10 min at 95 °C in the presence of 200 ng of deuterated standards. After cooling, samples were extracted by n-hexane/ethyl acetate after acidification with acetic acid. After derivatization of the dry extract by PFPA/PFP-OH, the drugs were separated on a 30-m capillary column and detected using selected-ion monitoring (m/z 377 and 459 for THC and THC-COOH, respectively). Forty-three hair samples were obtained from fatal heroin overdose cases. Among them, 35% tested positive for cannabinoids. Hair concentrations ranged from 0.26 to 2.17 ng/mg (mean, 0.74 ng/mg) and 0.07 to 0.33 ng/mg (mean, 0.16 ng/mg) of THC and THC-COOH, respectively. As is generally the case for other drugs detected in hair, metabolite concentration was always lower when compared to the parent drug concentration. In pubic hair, THC concentrations ranged from 0.34 to 3.91 ng/mg (mean, 1.35 ng/mg) and THC-COOH concentrations from 0.07 to 0.83 ng/mg (mean, 0.28 ng/mg). In most cases, the highest cannabinoid concentration was found in pubic hair, suggesting that this sample may be the more suitable for cannabis testing.  相似文献   

12.
Cannabinoids in blood and urine after passive inhalation of Cannabis smoke   总被引:1,自引:0,他引:1  
To test the possibility that cannabinoids are detectable following passive inhalation of Cannabis smoke the following study was performed. Five healthy volunteers who had previously never used Cannabis, passively inhaled Cannabis smoke for 30 min. Cannabis smoke was provided by other subjects smoking either marijuana or hashish cigarettes in a small closed car, containing approximately 1650 L of air. delta 9-Tetrahydrocannabinol (THC) could be detected in the blood of all passive smokers immediately after exposure in concentrations ranging from 1.3 to 6.3 ng/mL. At the same time total blood cannabinoid levels (assayed by radioimmunoassay [RIA] ) were higher than 13 ng/mL in four of the volunteers. Both THC and cannabinoid blood concentrations fell close to the cutoff limits of the respective assays during the following 2 h. Passive inhalation also resulted in the detection of cannabinoids in the urine by RIA and enzyme multiple immunoassay technique (EMIT) assays (above 13 and 20 ng/mL, respectively). It is concluded that the demonstration of cannabinoids in blood or urine is no unequivocal proof of active Cannabis smoking.  相似文献   

13.
Little is known of the postmortem distribution of ?9‐tetrahydrocannabinol (THC) and its major metabolite, 11‐nor‐9‐carboxy‐?9‐tetrahydrocannabinol (THCCOOH). Data from 55 pilots involved in fatal aviation accidents are presented in this study. Gas chromatography/mass spectrometry analysis obtained mean THC concentrations in blood from multiple sites, liver, lung, and kidney of 15.6 ng/mL, 92.4 ng/g, 766.0 ng/g, 44.1 ng/g and mean THCCOOH concentrations of 35.9 ng/mL, 322.4 ng/g, 42.6 ng/g, 138.5 ng/g, respectively. Heart THC concentrations (two cases) were 184.4 and 759.3 ng/g, and corresponding THCCOOH measured 11.0 and 95.9 ng/g, respectively. Muscle concentrations for THC (two cases) were 16.6 and 2.5 ng/g; corresponding THCCOOH, “confirmed positive” and 1.4 ng/g. The only brain tested in this study showed no THC detected and 2.9 ng/g THCCOOH, low concentrations that correlated with low values in other specimens from this case. This research emphasizes the need for postmortem cannabinoid testing and demonstrates the usefulness of a number of tissues, most notably lung, for these analyses.  相似文献   

14.
There were 13,176 roadside drug tests performed in the first year of the random drug-testing program conducted in the state of Victoria. Drugs targeted in the testing were methamphetamines and Δ9-tetrahydrocannabinol (THC). On-site screening was conducted by the police using DrugWipe®, while the driver was still in the vehicle and if positive, a second test on collected oral fluid, using the Rapiscan®, was performed in a specially outfitted “drug bus” located adjacent to the testing area. Oral fluid on presumptive positive cases was sent to the laboratory for confirmation with limits of quantification of 5, 5, and 2 ng/mL for methamphetamine (MA), methylenedioxy-methamphetamine (MDMA), and THC, respectively. Recovery experiments conducted in the laboratory showed quantitative recovery of analytes from the collector. When oral fluid could not be collected, blood was taken from the driver and sent to the laboratory for confirmation. These roadside tests gave 313 positive cases following GC–MS confirmation. These comprised 269, 118, and 87 cases positive to MA, MDMA, and THC, respectively. The median oral concentrations (undiluted) of MA, MDMA, and THC was 1136, 2724, and 81 ng/mL. The overall drug positive rate was 2.4% of the screened population. This rate was highest in drivers of cars (2.8%). The average age of drivers detected with a positive drug reading was 28 years. Large vehicle (trucks over 4.5 t) drivers were older; on average at 38 years. Females accounted for 19% of all positives, although none of the positive truck drivers were female. There was one false positive to cannabis when the results of both on-site devices were considered and four to methamphetamines.  相似文献   

15.
16.
Oral fluid (collected with the Intercept((R)) device) and plasma samples were obtained from 139 individuals suspected of driving under the influence of drugs and analyzed for Delta(9)-tetrahydrocannabinol (THC), the major psychoactive constituent of cannabis, using a validated quantitative LC-MS-MS method. The first aim of the study was to investigate the correlation between the analytical data obtained in the plasma and oral fluid samples, to evaluate the use of oral fluid as a 'predictor' of actual cannabis influence. The results of the study indicated a good accuracy when comparing THC detection in oral fluid and plasma (84.9-95.7% depending on the cut-off used for plasma analysis). ROC curve analysis was subsequently used to determine the optimal cut-off value for THC in oral fluid with plasma as reference sample, in order to 'predict' a positive plasma result for THC. When using the LOQ of the method for plasma (0.5 ng/mL), the optimal cut-off was 1.2 ng/mL THC in oral fluid (sensitivity, 94.7%; specificity, 92.0%). When using the legal cut-off in Belgium for driving under the influence in plasma (2 ng/mL), an optimal cut-off value of 5.2 ng/mL THC in oral fluid (sensitivity, 91.6%; specificity, 88.6%) was observed. In the second part of the study, the performance of the on-site Dr?ger DrugTest for the screening of THC in oral fluid during roadside controls was assessed by comparison with the corresponding LC-MS-MS results in plasma and oral fluid. Since the accuracy was always less than 66%, we do not recommend this Dr?ger DrugTest system for the on-site screening of THC in oral fluid.  相似文献   

17.
Gas chromatography was used to study the cannabinoid content ("potency") of illicit cannabis seized by police in England in 2004/5. Of the four hundred and fifty two samples, indoor-grown unpollinated female cannabis ("sinsemilla") was the most frequent form, followed by resin (hashish) and imported outdoor-grown herbal cannabis (marijuana). The content of the psychoactive cannabinoid delta 9-tetrahydrocannabinol (THC) varied widely. The median THC content of herbal cannabis and resin was 2.1% and 3.5%, respectively. The median 13.9% THC content of sinsemilla was significantly higher than that recorded in the UK in 1996/8. In sinsemilla and imported herbal cannabis, the content of the antipsychotic cannabinoid cannabidiol (CBD) was extremely low. In resin, however, the average CBD content exceeded that of THC, and the relative proportions of the two cannabinoids varied widely between samples. The increases in average THC content and relative popularity of sinsemilla cannabis, combined with the absence of the anti-psychotic cannabinoid CBD, suggest that the current trends in cannabis use pose an increasing risk to those users susceptible to the harmful psychological effects associated with high doses of THC.  相似文献   

18.
Fentanyl is a potent synthetic opioid used as a general anesthetic and analgetic. Fatal outcome from intravenous misuse of transdermal fentanyl is rare, and there are few such reports in literature. Here we report two cases of fatal intravenous injection of the content from fentanyl patches. Both were male drug addicts, found dead within a one week interval in the same apartment. Post-mortem femoral blood was screened for amphetamines, cannabinoids, cocaine, and opioids with immunological methods (EMIT II) and further with headspace gas chromatography for alcohol and with liquid chromatography mass spectrometry (LC-MS) for different drugs, including fentanyl. Confirmatory analysis of fentanyl and morphine was performed by gas chromatography-mass spectrometry (GC-MS). In the first case, the toxicological analysis revealed fentanyl (2.7 ng/mL), morphine (31.4 ng/mL), and ethanol (1.1 g/L) in postmortem blood and amphetamine, cannabinoids, morphine, and ethanol (1.4 g/L) in postmortem urine. In the second case, the analysis revealed fentanyl (13.8 ng/mL), 7-aminoclonazepam (57.1 ng/mL), and sertralin (91.9 ng/mL) in postmortem blood and a small amount of ethanol (0.1 g/L) in postmortem urine. Police investigation revealed that both the deceased had bought the patches from the same source. The present cases demonstrate the possibility of intravenous misuse of transdermal patches and the risk of fatal outcome.  相似文献   

19.
Recreational use of the potent synthetic opioid 3,4‐ dichloro‐N‐(2‐(dimethylamino)cyclohexyl)‐N‐methylbenzamide (U‐47700) is rising, accompanied by increasingly frequent cases of serious intoxication. This article reports a case of near‐fatal U‐47700 intoxication. A man was found unconscious (with drug powder residues). After 40 h in hospital (including 12 h of supported ventilation), he recovered and was discharged. Liquid chromatography/high‐resolution mass spectrometry (LC/HRMS) or gas chromatography/mass spectrometry (GC/MS) were used to detect and quantify substances in powders, serum and urine. Powders contained U‐47700 and two synthetic cannabinoids. Serum and urine were positive for U‐47700 (351.0 ng/mL), citalopram (<LOQ), tetrahydrocannabinol (THC: 3.3 ng/mL), midazolam (<LOQ) and a novel benzodiazepine, clonazolam (6.8 ng/mL) and their metabolites but negative for synthetic cannabinoids. If potent synthetic opioids become cheaper and more easily obtainable than their classical counterparts (e.g., heroin), they will inevitably replace them and users may be exposed to elevated risks of addiction and overdose.  相似文献   

20.
The accuracy of a quantitative analysis is highly dependent on the quality of the reference standard. Although reference standards are more and more supplied with a certificate, laboratories may feel the need for additional acceptance testing. In general, confirmation of the purity of many solid reference substances can be obtained by a number of simple tests. However, verification of the true content of reference solutions may be complicated. A number of problems with the THC quantitation caused our interest for a verification method for the THC reference solution. The quantitation of THC is performed by gas chromatography with flame ionisation detector. The effective carbon number concept was used to predict GC/FID response factors. Equations and data are presented to calculate theoretical response ratios of cannabinoids. The experimental data for CBD and CBN were in excellent agreement with the theoretical ones. The paper shows that the response factors of CBD and/or CBN can be used for the calculation of the THC content of either reference solutions or cannabis samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号