共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
急性乙醇中毒者体内乙醇动力学研究 总被引:3,自引:1,他引:3
根据乙醇在体内的代谢动力学特点,本文建立了研究急性乙醇中毒者血液乙醇动力学数学模型,其表达式为:x(t)=x_0(1-e-~(kat))-k_bt。从该数学模型可求得乙醇在体内的吸收速率常数(K_a)和消除速率常数(K_b),从而可以获得体内乙醇浓度动态变化曲线。所以,饮用乙醇饮料后的时刻乙醇浓度(x(t))均可由曲线中查得。实验研究证实,以该数学模型导出的参数与实验获得的结果相一致。 相似文献
3.
乙醇对氯胺酮在家兔体内毒物代谢动力学的影响研究 总被引:1,自引:0,他引:1
目的研究乙醇对氯胺酮在家兔体内毒物代谢动力学行为的影响。方法实验家兔分为单用氯胺酮组、氯胺酮与乙醇合用组及对照组,三组动物分别灌胃氯胺酮0.15 g/kg、乙醇3.0g/kg与氯胺酮0.15 g/kg及等体积生理盐水。分别于给药前和给药后不同时间点收集血、尿标本,GC和GC/MS法测定氯胺酮和代谢物去甲氯胺酮浓度,WinNor-Lin软件拟合房室模型并计算氯胺酮和去甲氯胺酮毒物代谢动力学参数。结果氯胺酮在家兔体内的毒物代谢动力学过程呈一级动力学特征,符合二室开放模型,合用乙醇后不改变其房室类型。合用乙醇组家兔体内氯胺酮的K10、AUC和β均大于单用氯胺酮组,而T1/2K10、T1/2β、A和Cmax均小于单用氯胺酮组,两组之间存在显著性差异(P0.05);V/F、K01、K12、K21、T1/2K01、α、T1/2α、Tmax和B等参数两组之间无显著性差异(P0.05)。合用乙醇组家兔体内氯胺酮的代谢物去甲氯胺酮的K01、A、B和Cmax等参数均大于单用氯胺酮组,而T1/2K01、Tmax均小于单用氯胺酮组,两组之间存在显著性差异(P0.05);V/F、K10、K12、K21、AUC、T1/2K10、T1/2α、T1/2β、β等参数两组之间无显著性差异(P0.05)。结论乙醇可加快氯胺酮在体内的消除过程,促进其转化为去甲氯胺酮,对于氯胺酮与乙醇合并滥用的鉴定,应考虑两者的相互作用。 相似文献
4.
5.
目的乙醇代谢动力学受诸多因素影响,关于酒的种类对其影响少见报道。方法本研究让志愿者在相同的饮酒时间内,饮用含相同乙醇量的啤酒、白酒,将所得数据用药代动力学计算程序DAS Ver1.0进行处理。结果乙醇的体内过程符合一级吸收、非线性消除、一室模型,权重为1。啤酒与白酒相比,吸收速度快,峰浓度高,达峰时间早,消除速度快。结论酒的种类对乙醇代谢动力学有影响,如果根据乙醇的代谢动力学规律来推测饮酒个体某一时刻的BAC,或根据BAC推测实际饮酒量,应该充分考虑到酒的种类对乙醇代谢动力学的影响。 相似文献
6.
目的乙醇代谢动力学受诸多因素影响,关于酒的种类对其影响少见报道。方法本研究让志愿者在相同的饮酒时间内,饮用舍相同乙醇量的啤酒、白酒。将所得数据用药代动力学计算程序DAS Ver1.0进行处理。结果乙醇的体内过程符合一级吸收、非线性消除、一室模型,权重为1。啤酒与白酒相比,吸收速度快,峰浓度高。达峰时间旱,消除速度快。结论酒的种类对乙醇代谢动力学有影响,如果根据乙醇的代谢动力学规律来推测饮酒个体某一时刻的BAC。或根据BAC推测实际饮酒量,应该充分考虑到酒的种类对乙醇代谢动力学的影响。 相似文献
7.
在法医学非正常死亡的尸体检验以及酒后驾车肇事的司法鉴定中,测定尸体或活体血液、尿液中的乙醇含量,推测案发时血液乙醇浓度对于判断其中毒程度和死亡原因,具有重要意义。近年来,对乙醇的吸收、代谢、测定等的法医学研究,国外已有很多文献报导:而国内对此研究甚少。因此, 相似文献
8.
指尖血中乙醇含量的测定 总被引:1,自引:0,他引:1
本文介绍了采用手指尖取血,用顶空气相色谱和直接进样技术测定血中乙醇含量的方法,两种方法均在0.1~10mg/ml范围内呈线性,变异系数小于10%。经五例志愿受试者比较,静脉血和指尖血中乙醇含量测得值相对差值在15%以下。 相似文献
9.
10.
11.
Of approximately 5,000 forensic cases with a positive ethanol result, over 1,000 were available in which both blood and urine were present for comparison of ethanol content. Data were examined for calculation of the urine to blood ethanol concentration ratio, with the intent of evaluating the validity of predicting a blood ethanol level given a urine ethanol level. The overall urine to blood ethanol concentration ratio was 1.57:1 with a range of 0.7 to 21.0:1. The extremely wide range of values implies that a large degree of error would be introduced if a mean ratio was used when predicting a blood ethanol level from a urine ethanol level. 相似文献
12.
目的探索饮酒后人体内血醇浓度(BAC)变化及其影响因素,建立BAC代谢的数学模型。方法采用顶空气相色谱氢火焰离子化检测器和内标曲线法测量酒后人体内的BAC,利用SPSS20.0和R软件对数据进行相关性分析并建立数学模型。结果女性的平均BAC消除速率为9.54mg/100m L/h,男性的平均BAC消除速率为12.19mg/100m L/h,女性消除速率小于男性,并且BAC消除速率与性别中等相关,与体重强相关,与年龄无关。通过构建混合效应模型可以准确的预测BAC,该模型的平均绝对误差(MAE)为1.60mg/100m L,其次利用决策树分析数据,其MAE为9.99mg/100m L。结论饮酒后人体内BAC消除速率与性别、体重有关,通过时间、饮酒量、性别、体重建立混合效应模型可以准确推断BAC。 相似文献
13.
目的确定血液中乙醇最佳保存条件,探讨影响血液中乙醇含量稳定性的主要因素。方法对血液保存的温度(-20、4、20℃)、防腐剂(NaF、无防腐剂、Na2O2)、储存容器中空气所占比例(0%、25%、50%)和血醇质量浓度(0.2、0.8、2.0mg/mL)四个因素采用正交试验L9(34)方法分组,样本采用顶空气相色谱法进行测定,测定结果采用方差分析进行讨论。结果在20℃保存且不加入防腐剂的两组样本中血醇浓度变化明显,其余变化不明显。结论血液样本在4℃、储存容器中空气比例为50%和加防腐剂(NaF)的条件下保存,稳定性最佳;四个影响因素中温度为影响血液中乙醇含量稳定性的主要因素。 相似文献
14.
15.
Alan Wayne Jones; 《Journal of forensic sciences》2024,69(4):1473-1480
This technical note reviews the plethora of concentration units used to report blood-alcohol concentration (BAC) and breath-alcohol concentrations (BrAC) for legal purposes in different countries. The choice of units sometimes causes confusion when scientific papers originating from a certain country might be introduced into evidence via expert testimony, such as when alcohol-related crimes are prosecuted. The concentration units are also important to consider when blood/breath ratios (BBRs) of alcohol are calculated and compared between countries. Statutory BAC limits for driving in most nations are reported in mass/volume (m/v) units, such as g/100 mL (g%) in the United States, mg/100 mL (mg%) in the United Kingdom and Republic of Ireland, or g/L (mg/mL) in many EU nations. By contrast, Germany and the Nordic countries report BAC as mass/mass (m/m) units, hence g/kg or mg/g, which are ~5.5% lower than m/v units, because whole blood has an average density of 1.055 g/mL. There are historical reasons for reporting BAC in mass/mass units because the aliquots of blood analyzed were measured by weight rather than volume. The difference between m/m and m/v is also important in postmortem toxicology, such as when distribution ratios of ethanol between blood and other biological specimens, such as urine, vitreous humor, and cerebrospinal fluid, are reported. 相似文献
16.
Patrick Allan Kosecki PhD Erika Canonico MS Lori Abbott BS 《Journal of forensic sciences》2023,68(2):682-687
Ethanol stability in preserved antemortem blood has been widely studied since it is a common practice in cases involving suspected impaired driving to collect antemortem blood in evacuated blood tubes containing sodium fluoride. In some situations, antemortem blood is submitted to a forensic laboratory for ethanol analysis in evacuated blood tubes that contain only an anticoagulant. There has been limited research on ethanol stability in antemortem blood stored without a preservative. On two occasions, antemortem blood was collected from five ethanol-free individuals into 6-ml Vacutainer® tubes containing only 10.8 mg potassium EDTA. The blood tubes were spiked with ethanol to approximately either 0.08 or 0.15 g/dl. Dual-FID headspace gas chromatography was used to analyze 58 blood tubes, 29 from each session, for ethanol 1 day after sample collection and again after 1 year of refrigerated storage (~4°C). Statistically significant decreases in ethanol were detected at the 0.05 level of significance. Mean decreases in ethanol after 1 year of storage for the 0.08 and 0.15 g/dl samples were 0.013 and 0.010 g/dl, respectively. The mean ethanol decrease across all tubes was 0.012 g/dl. The range of decreases for the 58 blood tubes was 0.003–0.018 g/dl. The mean ethanol decreases measured in this unpreserved antemortem blood are comparable in magnitude to those previously observed in antemortem blood containing sodium fluoride after 1 year of refrigerated storage. Ethanol did not increase in the antemortem blood samples despite the absence of sodium fluoride. 相似文献
17.
血中酒精消除速度与浓度推算关系的研究 总被引:8,自引:0,他引:8
目的 研究人血中酒精消除速度与血中酒精浓度的推算关系。方法 用呼气式酒精测定仪测定95位自愿受试者饮酒后一定时间内的血中酒精浓度,对时一浓曲线进行分析。结果 血中酒精的消除符合线性消除规律,消除线性相关系数为-0.989±0.011,最小值为-0.098,最大值-1.000;血中酒精消除速度为-0.140 mg·ml-1·h-1±0.028,最小值为-0.098 mg·ml-1·h-1,最大值-0.230 mg·ml-1·h-1。结论 血中酒精浓度可依据酒精消除速度[-0.10mg·ml-1·h-1]进行回推算。 相似文献
18.
驾驶员酒后血液酒精含量与时间关系研究 总被引:1,自引:0,他引:1
目的研究驾驶员少量饮酒后体内酒精含量与时间的变化关系。方法利用呼吸式测酒器对驾驶员酒后30min以后血液酒精含量进行测量,每隔20-30min测量一次,绘出血液酒精含量与时间的关系曲线。结果血液酒精含量与时间的变化关系基本为线性关系,拟合曲线斜率略有差异。结论对于喝1瓶啤酒的情况,酒后30-60min内都降到20mg/100ml以下,可为驾驶员掌握酒后开车时间和交警执法检查提供数据参考。 相似文献
19.
Gianpiero Boatto M.D. Claudia Trignano M.D. Lucia Burrai M.D. Andrea Spanu M.D. Maria Nieddu Ph.D. 《Journal of forensic sciences》2015,60(Z1):S231-S233
In some countries, it is illegal to drive with any detectable amount of alcohol in blood; in others, the legal limit is 0.5 g/L or lower. Recently, some defendants charged with driving under the influence of alcohol and have claimed that positive breath alcohol test results were due to the ingestion of homeopathic mother tinctures. These preparations are obtained by maceration, digestion, infusion, or decoction of herbal material in hydroalcoholic solvent. A series of tests were conducted to evaluate the alcoholic content of three homeopathic mother tinctures and their ability to produce inaccurate breath alcohol results. Nine of 30 subjects gave positive results (0.11–0.82 g/L) when tests were taken within 1 min after drinking mother tincture. All tests taken at least 15 min after the mother tincture consumption and resulted in alcohol-free readings. An observation period of 15–20 min prior to breath alcohol testing eliminates the possibility of false-positive results. 相似文献
20.
Patrick Allan Kosecki Ph.D. Erika Canonico M.S. Phillip Brooke M.S. 《Journal of forensic sciences》2020,65(6):2198-2200
The stability of ethanol in antemortem blood stored under various conditions has been widely studied. Antemortem blood samples stored at refrigerated temperature, at room temperature, and at elevated temperatures tend to decrease in ethanol concentration with storage. It appears that the stability of ethanol in blood exposed to temperatures greater than 38°C has not been evaluated. The case presented here involves comparison of breath test results with subsequent analysis of blood drawn at the time of breath testing. However, the blood tubes were in a refrigerator fire followed by refrigerated storage for 5 months prior to analysis by headspace gas chromatography. The subject’s breath was tested twice using an Intoxilyzer 8000. The subject’s blood was tested in duplicate using an Agilent headspace gas chromatograph. The measured breath ethanol concentration was 0.103 g/210 L and 0.092 g/210 L. The measured blood ethanol concentration was 0.0932 g/dL for both samples analyzed. Although the mean blood test result was slightly lower than the mean breath test result, the mean breath test result was within the estimated uncertainty of the mean blood test result. Even under the extreme conditions of the blood kit being in a refrigerator fire, the measured blood ethanol content agreed well with the paired breath ethanol test. 相似文献