首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Two different methods of recovering arson accelerants from fire debris are compared: distillation with addition of n-hexane and adsorption onto activated charcoal. Both procedures involve the use of the gas chromatography/mass spectrometry (GC/MS) utilizing specific mass ion programs. Some casework examples have been analyzed and the results show that, in spite of the advantages of short application times in the adsorption method, the distillation technique presented a higher degree of efficiency.  相似文献   

2.
One of the aims of fire investigations is to identify associations among accelerants according to their source. In this study, 50 gasoline samples--representing five brands--were analyzed using solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). Chemometric procedures, such as principal component analysis (PCA) and discriminant analysis (DA), were applied to a data matrix obtained by the target compound chromatogram method, to discriminate samples according to their brand. PCA was successful in finding a natural grouping of samples according to their brand, suggesting that aromatic compounds were more useful than aliphatics for the purpose of this study. DA, if applied to aromatic compounds, gave both a classification ability and a prediction ability of 100%. The outstanding results obtained by this work provide the basis of a data matrix that could be used in real cases of arson to link a sample of unevaporated gasoline to its brand or refinery.  相似文献   

3.
Headspace analysis by extraction/GC-MS is a common method of detecting volatile hydrocarbon accelerants in fire debris samples. Solid-phase microextraction was tested to determine if there is selective extraction of chemically distinct compounds. It was found that both the polydimethylsiloxane (PDMS) and Carboxen/PDMS solid phase microextraction fibers show preferential extraction of aliphatic or aromatic compounds from the headspace depending on fiber type and temperature. The Carboxen/PDMS fiber type showed particular (although not exclusive) selectivity for extraction of aromatic hydrocarbons. Other experimental considerations of SPME are noted.  相似文献   

4.
In Japan, taxed diesel fuel from non-taxed fuel oil-A is illegally produced by removing coumarin, which is added as a non-taxed marker. The coumarin is removed using concentrated sulfuric acid and this produces a high viscosity and hazardous material, called "sulfuric acid pitch", as a by-product. This compound has a detrimental effect on the environment and is hazardous to humans. The actions have been associated with organized crime with the illegally gained taxes becoming financial bases. To discriminate legal and diesel oil from illegal product, the peak area ratio R(SC), the ratio of total sulfur to carbon (>C(14)), was used. R(SC) is calculated by the total areas of sulfur and carbon (>C(14)) from the gas chromatogram obtained by gas chromatography-atomic emission detection (GC-AED). Sulfur in legal diesel fuels is strictly regulated by a maximum limit, which was 50ppm (and is now 10ppm), but in the preparation of illegal diesel oil, in which coumarin is eliminated, sulfur cannot be removed. Therefore, the R(SC) of fuel oil-A and illegal fuel oil is over 15, whereas those for legal fuel oil and diesel fuel are under 2.0. Furthermore, these ratios do not change in weathering experiments. GC-AED was applied to an actual arson case and was found to be effective for the determination of total sulfur in trace amounts of accelerants detected in fire debris at the arson scene, and hence was effective for the characterization of the ignitable liquids used.  相似文献   

5.
A solid-phase microextraction (SPME) procedure involving direct contact between the SPME fibers and the solid matrix and subsequent gas chromatography/mass spectrometric analysis for the detection of accelerants in fire debris is described. The extraction performances of six fibers (100 mum polydimethylsiloxane, 65 mum polydimethylsiloxane-divinylbenzene, 85 mum polyacrylate, 85 mum carboxen-polydimethylsiloxane, 70 mum Carbowax-divinylbenzene, and 50/30 mum divinylbenzene-Carboxen-polydimethylsiloxane) were investigated by directly immersing the fibers into gasoline, kerosene, and diesel fuel. For simulated fire debris, in the direct contact extraction method, the SPME fiber was kept in contact with the fire debris matrix during extraction by penetrating plastic bags wrapping the sample. This method gave comparable results to the headspace SPME method in the extraction of gasoline and kerosene, and gave an improved recovery of low-volatile components in the extraction of diesel fuel from fire debris. The results demonstrate that this procedure is suitable as a simple and rapid screening method for detecting ignitable liquids in fire debris packed in plastic bags.  相似文献   

6.
A new, simple method for the reproducible creation of pyrolysis products from different materials that may be found at a fire scene is described. A temperature programmable steady-state tube furnace was used to generate pyrolysis products from different substrates, including softwoods, paper, vinyl sheet flooring, and carpet. The temperature profile of the tube furnace was characterized, and the suitability of the method to reproducibly create pyrolysates similar to those found in real fire debris was assessed. The use of this method to create proficiency tests to realistically test an examiner's ability to interpret complex gas chromatograph-mass spectrometric fire debris data, and to create a library of pyrolsates generated from materials commonly found at a fire scene, is demonstrated.  相似文献   

7.
The recent National Academy of Sciences report on forensic sciences states that the study of fire patterns and debris in arson fires is in need of additional work and eventual standardization. We discuss a recently introduced method that can provide predicted evaporation patterns for ignitable liquids as a function of temperature. The method is a complex fluid analysis protocol, the advanced distillation curve approach, featuring a composition explicit data channel for each distillate fraction (for qualitative, quantitative, and trace analysis), low uncertainty temperature measurements that are thermodynamic state points that can be modeled with an equation of state, consistency with a century of historical data, and an assessment of the energy content of each distillate fraction. We discuss the application of the method to kerosenes and gasolines and outline how expansion of the scope of fluids to other ignitable liquids can benefit the criminalist in the analysis of fire debris for arson.  相似文献   

8.
Review of analytical techniques for arson residues   总被引:1,自引:0,他引:1  
Arson is a serious crime that affects society through cost, property damage, and loss of life. It is important that the methods and technologies applied by fire investigators in detection of evidence and subsequent analyses have a high degree of reliability, sensitivity, and be subject to rigorous quality control and assurance. There have been considerable advances in the field of arson investigation since the 1950s. Classification of ignitable liquids has been updated to include many new categories due to developments in the petroleum industry. Techniques such as steam or vacuum distillation and gas chromatography (GC) with flame ionization detection that may have been considered acceptable--even a benchmark--40 years ago, are nowadays generally disfavored, to the extent that their implementation may almost be considered as ignorance in the field. The advent of readily available mass spectrometric techniques has revolutionized the field of fire debris analysis, increasing the degree of sensitivity and discrimination possible considerably. Multi-dimensional GC--particularly GC x GC--while not yet widely applied, is rapidly gaining recognition as an important technique. This comprehensive review focuses on techniques and practices used in fire investigation, from scene investigation to analysis.  相似文献   

9.
A Bayesian soft classification method combined with target factor analysis (TFA) is described and tested for the analysis of fire debris data. The method relies on analysis of the average mass spectrum across the chromatographic profile (i.e., the total ion spectrum, TIS) from multiple samples taken from a single fire scene. A library of TIS from reference ignitable liquids with assigned ASTM classification is used as the target factors in TFA. The class-conditional distributions of correlations between the target and predicted factors for each ASTM class are represented by kernel functions and analyzed by Bayesian decision theory. The soft classification approach assists in assessing the probability that ignitable liquid residue from a specific ASTM E1618 class, is present in a set of samples from a single fire scene, even in the presence of unspecified background contributions from pyrolysis products. The method is demonstrated with sample data sets and then tested on laboratory-scale burn data and large-scale field test burns. The overall performance achieved in laboratory and field test of the method is approximately 80% correct classification of fire debris samples.  相似文献   

10.
The effects of a Micelle Encapsulator Fire Suppression Agent (F-500, Hazard Control Technologies Inc., Fayetteville, Georgia) on the routine analysis of fire debris samples by Gas Chromatography (GC) were studied. When mixed with water the product can be used in the suppression of Class A and Class B fires. Laboratory tests were performed to determine whether or not the product has any effect on the analysis for ignitable liquids by GC, in particular for gasoline, medium petroleum distillates. and heavy petroleum distillates. Test burns were suppressed using either the micelle encapsulator or water and samples collected from these burns were analyzed. The results of analysis show that use of the micelle encapsulator at a fire scene may affect the chromatographic data obtained from samples collected by the investigator. However, the effect does not prevent the identification of common ignitable liquids in fire debris samples.  相似文献   

11.
Using passive headspace concentration as described in ASTM E 1412 and gas chromatographic/mass spectrometric (GC/MS) analysis as described in ASTM E 1618, the author has studied the persistence of solvents in floor coating materials. Both oak and pine flooring boards were tested using stain, stain with polyurethane varnish, and oil finish after a period of ten months and 24 months. The solvents from all three floor-coating substances were easily detectable after 24 months, and showed no signs of diminution when compared with the samples tested earlier. These results point out the need for the submission of comparison samples whenever wood flooring samples are submitted for fire debris analysis in suspected arson cases.  相似文献   

12.
Solid-phase microextraction (SPME) is well documented with respect to its convenience and applicability to sampling volatiles. Nonetheless, fire debris analysts have yet to widely adopt SPME as a viable extraction technique, although several fire debris studies have demonstrated the utility of SPME coupled with gas chromatography-mass spectrometry (GC-MS) to identify ignitable liquids. This work considers the expansion of SPME sampling from the customary thermal desorption mode to solvent-based analyte desorption for the analysis of ignitable residues. SPME extraction fibers are desorbed in 30 microL of nonaqueous solvent to yield a solution amenable to conventional GC-MS analysis with standard autosampler apparatus. This approach retains the advantages of convenience and sampling time associated with thermal desorption while simultaneously improving the flexibility and throughput of the method. Based on sampling results for three ignitable liquids (gasoline, kerosene, anddiesel fuel) in direct comparisons with the widely used activated charcoal strip (ACS) method this methodology appears to be a viable alternative to the routinely used ACS method.  相似文献   

13.
《Science & justice》2014,54(6):401-411
In the investigation of arson, evidence connecting a suspect to the fire scene may be obtained by comparing the composition of ignitable liquid residues found at the crime scene to ignitable liquids found in possession of the suspect. Interpreting the result of such a comparison is hampered by processes at the crime scene that result in evaporation, matrix interference, and microbial degradation of the ignitable liquid.Most commonly, gasoline is used as a fire accelerant in arson. In the current scientific literature on gasoline comparison, classification studies are reported for unevaporated and evaporated gasoline residues. In these studies the goal is to discriminate between samples of several sources of gasoline, based on a chemical analysis. While in classification studies the focus is on discrimination of gasolines, for forensic purposes a likelihood ratio approach is more relevant.In this work, a first step is made towards the ultimate goal of obtaining numerical values for the strength of evidence for the inference of identity of source in gasoline comparisons. Three likelihood ratio methods are presented for the comparison of evaporated gasoline residues (up to 75% weight loss under laboratory conditions). Two methods based on distance functions and one multivariate method were developed. The performance of the three methods is characterized by rates of misleading evidence, an analysis of the calibration and an information theoretical analysis.The three methods show strong improvement of discrimination as compared with a completely uninformative method. The two distance functions perform better than the multivariate method, in terms of discrimination and rates of misleading evidence.  相似文献   

14.
Fire debris evidence may contain ignitable liquid residues valuable in the investigation of a potential arson scene. The ability to obtain evidence containers that are contaminant-free and vapor-tight is essential to the analysis and storage of fire debris evidence. Commercial containers such as metal "paint" cans, glass mason jars, and polymer bags are often employed as fire debris evidence containers. The purpose of this research was to determine which of these three types of containers provided the most vapor-tight seal for the prevention of ignitable liquid vapor loss and to assess the potential for cross-contamination. Leak rates for each type of container were measured under controlled conditions. Simple mixtures of hydrocarbons were utilized in these experiments. Leak rates were determined based on the amounts of hydrocarbon recovered from activated charcoal located outside the test container and within a secondary container. Quantitation of the hydrocarbons recovered from activated charcoal was calculated using external standard calibration curves following analysis by gas chromatography-mass spectrometry. The results demonstrated that glass jars had the fastest leak rate followed by metal paint cans and properly heat-sealed polymer bags with the slowest leak rate. Each container exhibited a different leak mechanism, which resulted in an observable effect on the composition of hydrocarbons lost from the container. Hydrocarbon transfer from one container to another is also demonstrated. This study presents results that reveal the most vapor-tight container to be a properly heat-sealed copolymer bag.  相似文献   

15.
Ignitable liquids such as fuels, alcohols and thinners can be used in criminal activities, for instance arsons. Forensic experts require to know their chemical compositions, as well as to understand how different modification effects could impact them, in order to detect, classify and identify them properly in fire debris. The acid alteration/acidification of ignitable liquids is a modification effect that sharply alters the chemical composition, for example, of gasoline and diesel fuel, interfering in the forensic analysis and result interpretation. However, to date there is little information about the consequences of this effect over other accelerants of interests. In this research paper, the alteration by sulfuric acid of several commercial thinners and other accelerants of potential use in arsons is studied in-depth. For that purpose, spectral (by ATR-FTIR) and chromatographic (by GC–MS) data were obtained from neat and acidified samples. Then, the spectral and chromatographic modifications of each studied ignitable liquid were discussed, proposing several chemical mechanisms that explain the new by-products produced and the gradual disappearance of the initial compounds. Hydrolysis, Fischer esterification and alkylation reactions are involved in the modification of esters, alcohols, ketones and aromatic compounds of the studied ignitable liquids. This information could be crucial for correctly identifying these accelerants. Additionally, an exploratory analysis revealed that some of the most altered ignitable liquid samples might be very similar with each other, which could have impact on casework.  相似文献   

16.
《Science & justice》2020,60(5):438-450
In many arson cases gasoline is used as a means to start the fire. In this paper results are presented for a likelihood-ratio (LR) system aimed at comparing gasoline traces from fire debris to a reference gasoline. The LR-system is able to deal with disturbing effects caused by burning and exposure to surroundings: pyrolysis products, preferential adsorption and evaporation. This paper focusses on the criminalistic and statistical aspects of the design of the LR-system, and presents results on performance of the LR-system. The details of trace gasoline recovery from fire debris will be presented in an accompanying paper.Validation and performance measures show that this system gives well-calibrated LRs for comparisons involving trace samples with a spread in quantity of gasoline, evaporation levels, and matrices that are typically encountered in casework. Rates of misleading evidence are less than 3.5%.We conclude that, despite limitations in experimental design, this LR-system can be useful to the comparison of gasoline profiles in casework practice.  相似文献   

17.
Arson is a significant problem around the world, and is a crime which results in a low number of convictions. The scene of an arson can be varied, commercial, residential or national park, and recently cases have been identified which were initiated by a lit match. Matches can be recovered from a scene, usually in a burnt condition. The benefit of analysing unburnt matches has been researched previously [1,2]. In most cases, burnt matches are recovered from scenes, and therefore the research was extended to investigate the potential of using IRMS to analyse burnt matches. This includes samples which have been exposed to petrol, and various fire extinguishing chemicals.Matches were sectioned to reveal central unburnt portions of wood and analysed by isotope ratio mass spectrometry (IRMS). The stable isotope profile (SIP) of the wooden matchstick samples was unaffected by the presence of both petrol and a variety of fire extinguisher chemicals. Any changes seen could be attributed to the natural variability of isotopic composition encountered in a natural material such as wood. These findings were confirmed by the isotope analysis of 19 matchstick samples placed in mock fire training scenarios. The data was examined using a paired t-test and Hotellings T2 test for a single sample.  相似文献   

18.
The chemical analysis of fire debris represents a crucial part in fire investigations to determine the cause of a fire. A headspace solid‐phase microextraction (HS‐SPME) procedure for the detection of ignitable liquids in fire debris using a fiber coated with a mixture of three different sorbent materials (Divinylbenzene/Carboxen/Polydimethylsiloxane, DVB/CAR/PDMS) is described. Gasoline and diesel fuel were spiked upon a preburnt matrix (wood charcoal), extracted and concentrated with HS‐SPME and then analyzed with gas chromatography/mass spectrometry (GC/MS). The experimental conditions—extraction temperature, incubation and exposure time—were optimized. To assess the applicability of the method, fire debris samples were prepared in the smoke density chamber (SDC) and a controlled‐atmosphere cone calorimeter. The developed methods were successfully applied to burnt particleboard and carpet samples. The results demonstrate that the procedure that has been developed here is suitable for detecting these ignitable liquids in highly burnt debris.  相似文献   

19.
Tests have determined that boots or shoes of individuals at a fire scene do not transport sufficient contaminants ("tracking") through the fire scene to produce a positive laboratory result for the presence of gasoline in a fire scene that was not present at the time of the fire. Questions about the validity of forensic laboratory results have been raised on the basis that low-level gasoline residues detected in the laboratory samples could have been the result of transporting the residue by footwear contaminated from the fire scene ("tracking"). The data collected in this study establish that "tracking" does not lead to false-positive laboratory results. Canines trained and experienced in the detection of trace ignitable liquid residues were also utilized in this study. The canine results confirmed that properly trained canines show a higher sensitivity than do standard ASTM laboratory techniques for fire debris analysis. In a few cases, canines responded to contamination, but laboratory testing (which is the definitive indicator) did not produce positive results.  相似文献   

20.
目的建立火场中汽油燃烧残留物ATD-GC-MS检验结果评价方法。方法将模拟燃烧样品用ATD-GC-MS法检验,检验结果通过对芳烃、烷烃、茚满、和萘系列的4个特征离子色谱图与已知汽油作比较,并利用向量夹角法计算样品与汽油色谱指纹图的相似度来对检验结果作评价。结果有汽油作助燃剂的模拟燃烧样品与汽油色谱指纹图的相似度一般大于90%,无汽油作助燃剂的样品则在60%以下。结论利用样品的4个特征离子色谱图与已知汽油作比较,并结合样品与汽油色谱指纹图相似度的计算,能对检验结果作出客观、可靠和准确的评价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号