首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The concentration of free-morphine was determined in peripheral (femoral) blood from heroin-related deaths and compared with the concentration in venous blood from impaired drivers. The presence of 6-MAM in blood or urine served as a biomarker for recent use of heroin. Males dominated over females (p<0.001) in both the autopsy cases (88%) and the drivers (91%), although their mean age was about the same 33-35 y (p>0.05). Concentrations of free-morphine in blood were not associated with age of heroin users in Sweden (p>0.05). The median concentration of free-morphine was higher in autopsy cases (0.24 mg/L, N=766) compared with apprehended drivers with 6-MAM in blood (0.15 mg/L, N=124, p<0.05), and appreciably higher than in drivers with 6-MAM in urine but not in blood (0.03 mg/L, N=1823, p<0.001). The free-morphine concentration was above 0.20mg/L in 65% of autopsy cases, 36% of drivers with 6-MAM in blood but only 1.4% of drivers with 6-MAM in urine. Poly-drug deaths had about the same concentrations of free-morphine in blood (0.24 mg/L, N=703) as heroin-only deaths (0.25 mg/L, N=63). The concentration of morphine in drug overdose deaths (median 0.25 mg/L, N=669) was about the same as in traumatic deaths among heroin users (0.23 mg/L, N=97). However, the concentration of morphine was lower when the deceased had consumed alcohol (0.18 mg/L, N=104) compared with taking a benzodiazepine (0.32 mg/L, N=94). The concentration distributions of free-morphine in blood in heroin-related deaths overlapped with the concentrations in impaired drivers, which makes the interpretation of toxicology results difficult without knowledge about tolerance to opiates in any individual case.  相似文献   

2.
Abstract: All cases presenting to the New South Wales Department of Forensic Medicine between January 1, 2001 and September 31, 2010 in which zolpidem was detected, were retrieved. A total of 91 cases were identified. The mean age was 49.4 years, 65.9% were male, and 61.5% were suicides. Zolpidem was a factor contributing to death in 35 (37.3%) cases, of which 31 (34.1%) involved zolpidem toxicity. The median blood zolpidem concentration was 0.20 mg/L (range 0.05–3.50 mg/L), with no significant gender difference. Drug toxicity cases involving zolpidem had significantly higher median blood zolpidem concentrations than other cases (0.50 vs. 0.10 mg/L). In 83.5% of cases, psychoactive substances other than zolpidem were detected, most commonly antidepressants (46.2%), benzodiazepines (35.2%), opioids (26.4%), and alcohol (39.6%). In summary, zolpidem was a factor contributing to death in a large proportion of cases, predominately involving drug toxicity and suicide.  相似文献   

3.
There is limited data on postmortem oxycodone concentrations, consisting of three published reports with a total of 11 cases, many of which were polypharmacy cases. This report presents the results of a review of autopsy and coroner's reports from 10 counties for the years 2000 and 2001 to locate cases with oxycodone or hydrocodone exposure as a leading cause of death. Eighty-eight cases were located. Twenty-four deaths were attributed to oxycodone alone. Mean and median postmortem oxycodone blood concentrations were 1.23 mg/L and 0.43 mg/L, respectively. The range was 0.12 to 8.0 mg/L, with 13 cases (54%) < or = 0.5 mg/L. Seventeen deaths were attributed to hydrocodone alone. Mean and median postmortem hydrocodone blood concentrations were 0.53 mg/L and 0.40 mg/L, respectively. The range was 0.12 to 1.6 mg/L, with 11 cases (65%) < or = 0.5 mg/L. There were seven cases where the cause of death was attributed to the effects of a combination of hydrocodone and oxycodone. Mean oxycodone and hydrocodone blood concentrations were 0.34 mg/L and 0.14 mg/L, respectively. Forty cases involved polysubstance overdoses with significant involvement of other drugs and ethanol. Mean oxycodone and hydrocodone blood concentrations were 0.18 mg/L and 0.29 mg/L, respectively. The list of other substances involved was extensive but included ethanol, amitriptyline, methadone, codeine, propoxyphene, and acetaminophen. The findings of this study report oxycodone values associated with a fatality at blood concentrations lower than previously reported. This may represent enhanced information because of the larger sample group. Hydrocodone values associated with a fatality were similar to previously published values.  相似文献   

4.
5.
Cocaine and its major metabolite benzoylecgonine (BZE) were determined in blood samples from people arrested in Sweden for driving under the influence of drugs (DUID) over a 5-year period (2000-2004). Venous blood or urine if available, was subjected to a broad toxicological screening analysis for cannabis, cocaine metabolite, amphetamines, opiates and the major benzodiazepines. Verification and quantitative analysis of cocaine and BZE in blood was done by gas chromatography-mass spectrometry (GC-MS) at limits of quantitation (LOQ) of 0.02mg/L for both substances. Over the study period 26,567 blood samples were analyzed and cocaine and/or BZE were verified in 795 cases (3%). The motorists using cocaine were predominantly men (>96%) with an average age of 28.3+/-7.1 years (+/-standard deviation, S.D.). The concentration of cocaine was below LOQ in 574 cases although BZE was determined at mean, median and highest concentrations of 0.19mg/L, 0.12mg/L and 1.3mg/L, respectively. In 221 cases, cocaine and BZE were together in the blood samples at mean and (median) concentrations of 0.076mg/L (0.05mg/L) and 0.859mg/L (0.70mg/L), respectively. The concentrations of BZE were always higher than the parent drug; mean BZE/cocaine ratio 14.2 (median 10.9) range 1-55. Cocaine and BZE were the only psychoactive substances reported in N=61 cases at mean (median) and highest concentrations of 0.095 (0.07) and 0.5mg/L for cocaine and 1.01 (0.70) and 3.1mg/L for BZE. Typical signs of drug influence noted by the arresting police officers included bloodshot and glossy eyes, agitation, difficulty in sitting still and incoherent speech.  相似文献   

6.
The concentrations of ethanol were determined in femoral venous blood (BAC) and urine (UAC) and the UAC/BAC ratios were evaluated for a large case series of forensic autopsies in which the primary cause of death was either acute alcohol poisoning (N=628) or chronic alcoholism (N=647). In alcohol poisoning deaths both UAC and BAC were higher by about 2g/l compared with chronic alcoholism deaths. In acute alcohol poisoning deaths the minimum BAC was 0.74 g/l and the distribution of UAC/BAC ratios agreed well with the shape of a Gaussian curve with mean+/-standard deviation (S.D.) and median (2.5th and 97.5th centiles) of 1.18+/-0.182 and 1.18 (0.87 and 1.53), respectively. In alcoholism deaths, when the BAC was above 0.74 g/l (N=457) the mean+/-S.D. and median (2.5th and 97.5th centiles) UAC/BAC ratios were 1.30+/-0.29 and 1.26 (0.87 and 2.1), respectively. When the BAC was below 0.74 g/l (N=190), the mean and median UAC/BAC ratios were considerably higher, being 2.24 and 1.58, respectively. BAC and UAC were highly correlated in acute alcohol poisoning deaths (r=0.84, residual S.D.=0.47 g/l) and in chronic alcoholism deaths (r=0.95, residual S.D.=0.41 g/l). For both causes of death (N=1275), the correlation between BAC and UAC was r=0.95 and the residual S.D. was 0.46 g/l. The lower UAC/BAC ratio observed in acute alcohol poisoning deaths (mean and median 1.18:1) suggests that these individuals died before absorption and distribution of ethanol in all body fluids were complete. The higher UAC/BAC ratio in chronic alcoholism (median 1.30:1) is closer to the value expected for complete absorption and distribution of ethanol in all body fluids.  相似文献   

7.
In this study we reviewed the post-mortem cases in the years 1999-2004 that were presented at the Netherlands Forensic Institute. The concentrations of amphetamine-based drugs in femoral blood from cases of suspected unnatural death were compared with concentrations in whole blood from non-fatal cases of driving under the influence (DUI cases) and with literature. Furthermore, the combinations with other drugs and/or alcohol were investigated. Amphetamine-based drugs were present in 70 post-mortem cases and 467 DUI cases. The most detected amphetamine-based drug was MDMA, followed by amphetamine. The presence of MDA could usually be explained by metabolism of MDMA. Methamphetamine and MDEA were rarely present. Frequently, the amphetamine-based drugs were taken in combination with alcohol and/or other non-amphetamine-based drugs such as cocaine or cannabinoids. The 70 post-mortem cases were divided into 38 amphetamine-based drug caused (i.e. the amphetamine-based drug directly caused or contributed to the death) and 32 amphetamine-based drug related deaths (i.e. death was not directly caused by the amphetamine-based drug). In the latter category, other (poly)drug intoxications and death by violence or drowning were the most frequent causes of death. In 30 cases, MDMA caused death directly. The range in blood concentrations of MDMA in these cases was substantial, i.e. 0.41-84 mg/L with a median concentration of 3.7 mg/L (n=30). MDMA blood concentrations in the MDMA related deaths (n=20) and in the DUI cases (n=360) varied up to 3.7 and 4.0 mg/L, respectively. Seven victims died from the direct effects of amphetamine; the blood concentration of amphetamine ranged from 0.24 to 11.3 mg/L, with a median concentration of 1.7 mg/L (n=7). The median concentrations of amphetamine in the amphetamine related deaths (n=13) and the DUI cases (n=208) were much lower, i.e. 0.28 and 0.22 mg/L, respectively. Amphetamine blood concentrations up to 6.0 and 2.3 mg/L were seen in the drug related deaths and DUI cases, respectively. The most frequently encountered amphetamine-based drugs in the investigated deaths were MDMA and amphetamine. The majority of MDMA- and amphetamine-caused deaths, i.e. 90% of these deaths, occurred with blood concentrations above 1.5 and 0.80 mg/L, respectively. MDMA and amphetamine blood concentrations in drug related deaths and DUI cases, however, overlap the range of fatal concentrations. Therefore, MDMA or amphetamine concentrations should never be used alone to establish the cause of death.  相似文献   

8.
Zolpidem is the prototype of a class of sedative hypnotic drugs that are derivatives of imidazopyridine and is sold in the United States under the trade name Ambien. Over a four-year period, zolpidem was identified in eight cases investigated by the Office of the Chief Medical Examiner, State of Maryland. Zolpidem was identified by gas chromatography-nitrogen-phosphorus detection (GC-NPD) following an alkaline extraction and was confirmed by full-scan electron impact gas chromatography/mass spectrometry. Zolpidem was quantitated by GC-NPD in all specimens received. Five of the cases presented were deaths due to drug intoxication. In three of these cases, zolpidem was an incidental finding because the drug fatalities resulted from other drugs. In the other two cases of drug intoxication, zolpidem was present in elevated concentrations and was a contributing, but not exclusive cause of the drug intoxication. The remaining three cases were deaths that were not caused by drugs. The blood zolpidem concentrations in these cases were therapeutic (0.28, 0.12 and 0.19 mg/L, respectively). In six of the eight cases where both blood and urine were analyzed, the blood concentration was higher than the urine concentration. The distribution of zolpidem into the liver and kidney failed to identify any sequestration of the drug into either specimen.  相似文献   

9.
目的建立全血中佐匹克隆、唑吡坦和扎来普隆的液相色谱一四级杆飞行时间串联质谱联用同时检测方法。方法采用液液萃取进行提取,提取物以ZorbaxEclipsePlusC18(2.1×50mm,1.8fire)色谱柱分离,以10mmol/L甲酸铵(含0.1%甲酸)一乙腈为流动相梯度洗脱,流速为0.2mL/min,四级杆一飞行时间串联质谱检测。结果全血中佐匹克隆和扎来普隆的线性范围为10ng/mL-500ng/mL,检出限为3ng/mL唑吡坦的线性范围为3ng/mL-300ng/mL,检出限为lng/mL。结论本方法准确、快速、灵敏,可用于全血中佐匹克隆、唑吡坦和扎来普隆的同时定性、定量检测。  相似文献   

10.
In this study we reviewed the post-mortem cases in the years 1999–2004 that were presented at the Netherlands Forensic Institute. The concentrations of amphetamine-based drugs in femoral blood from cases of suspected unnatural death were compared with concentrations in whole blood from non-fatal cases of driving under the influence (DUI cases) and with literature. Furthermore, the combinations with other drugs and/or alcohol were investigated. Amphetamine-based drugs were present in 70 post-mortem cases and 467 DUI cases. The most detected amphetamine-based drug was MDMA, followed by amphetamine. The presence of MDA could usually be explained by metabolism of MDMA. Methamphetamine and MDEA were rarely present. Frequently, the amphetamine-based drugs were taken in combination with alcohol and/or other non-amphetamine-based drugs such as cocaine or cannabinoids. The 70 post-mortem cases were divided into 38 amphetamine-based drug caused (i.e. the amphetamine-based drug directly caused or contributed to the death) and 32 amphetamine-based drug related deaths (i.e. death was not directly caused by the amphetamine-based drug). In the latter category, other (poly)drug intoxications and death by violence or drowning were the most frequent causes of death.In 30 cases, MDMA caused death directly. The range in blood concentrations of MDMA in these cases was substantial, i.e. 0.41–84 mg/L with a median concentration of 3.7 mg/L (n = 30). MDMA blood concentrations in the MDMA related deaths (n = 20) and in the DUI cases (n = 360) varied up to 3.7 and 4.0 mg/L, respectively. Seven victims died from the direct effects of amphetamine; the blood concentration of amphetamine ranged from 0.24 to 11.3 mg/L, with a median concentration of 1.7 mg/L (n = 7). The median concentrations of amphetamine in the amphetamine related deaths (n = 13) and the DUI cases (n = 208) were much lower, i.e. 0.28 and 0.22 mg/L, respectively. Amphetamine blood concentrations up to 6.0 and 2.3 mg/L were seen in the drug related deaths and DUI cases, respectively. The most frequently encountered amphetamine-based drugs in the investigated deaths were MDMA and amphetamine. The majority of MDMA- and amphetamine-caused deaths, i.e. 90% of these deaths, occurred with blood concentrations above 1.5 and 0.80 mg/L, respectively. MDMA and amphetamine blood concentrations in drug related deaths and DUI cases, however, overlap the range of fatal concentrations. Therefore, MDMA or amphetamine concentrations should never be used alone to establish the cause of death.  相似文献   

11.
We present a case series (N = 46) of individuals apprehended in Sweden for driving under the influence of drugs (DUID). These cases were selected because the concentrations of amphetamine in blood were abnormally high (> 5.0 mg/L), the highest being 17 mg/L. In comparison, the median blood-amphetamine concentration in a population of DUID offenders (N = 6,613) was 0.70 mg/L. Among the DUID suspects with extremely high blood-amphetamine concentrations there were 38 men (83%) with mean age of 37.8 y (SD 6.8 y) and 8 women (17%) with a mean age of 34.1 y (SD 4.3 y). All had previously been registered in our database (mean 12 times, median 9 times) for drug-related offences, including DUID. The concentration of amphetamine in blood of female offenders was slightly higher than the concentration in male offenders (6.6 mg/L vs. 5.8 mg/L), although this difference was not statistically significant (p > 0.05). The drugs other than amphetamine most frequently encountered in the blood samples were tetrahydrocannabinol and benzodiazepines (diazepam and nordiazepam). The commonest signs of drug use reported by the arresting police officers were bloodshot and glazed (watery) eyes, restlessness, talkativeness, exaggerated reflexes and slurred speech. Unsteady gait and dilated pupils were observed in some but not all individuals. These very high concentrations of amphetamine were tolerated without any fatalities indicating a pronounced adaptation to the pharmacologic effects of this central stimulant. Anecdotal information indicated that those with the very highest concentrations of amphetamine in blood had swallowed the drug to prevent being apprehended in possession of an illicit substance.  相似文献   

12.
Both ethanol and diazepam are classified as depressants of the central nervous system and exert their effects via the GABAA receptor complex. We report the coexistence and concentrations of ethanol, diazepam, and its primary metabolite nordiazepam in a case series of 234 forensic autopsies collected over a ten-year period. Diazepam, nordiazepam, and ethanol were determined in femoral venous blood by highly selective gas chromatographic methods. The mean (median) femoral blood concentrations were ethanol 0.24 g/100 mL (0.25 g/100 mL), diazepam (D) 0.23 microg/g (0.10 microg/g), nordiazepam (ND) 0.24 micro/g (0.20 microg/g), sum (D + ND) 0.43 microg/g (0.30 microg/g), and the ratio D/ND was 1.19 (1.0). When cause of death was attributed to alcohol and/or drug intoxication (N = 50), the mean and median blood-ethanol concentration was higher, being 0.36 g/100 mL and 0.38 g/100 mL, respectively, whereas the mean (median) and range of blood-diazepam concentrations were about the same, 0.23 microg/g (0.10 microg/g) and 0.05 to 1.2 microg/g. The femoral-blood concentrations of diazepam and nordiazepam were highly correlated (r = 0.73), but there was no correlation between the concentrations of ethanol and diazepam (r = -0.15). In another 114 fatalities (all causes of death) with diazepam and/or nordiazepam as the only drugs present, the mean (median) and range of blood-diazepam concentrations were 0.22 microg/g (0.10 microg/g) and 0.03 to 3.5 microg/g. The pathologists report showed that none of these deaths were classed as drug intoxications. The impression gleaned from this study of ethanol-diazepam deaths is that high blood-ethanol concentration is the major causative factor. We found no evidence that concurrent use of diazepam enhanced the acute toxicity of ethanol, although interpretation is complicated by the high blood-ethanol concentration (median 0.38 g/100 mL), making it difficult to discern an added effect of diazepam.  相似文献   

13.
Ethanol concentrations were measured in femoral venous blood in deaths attributed to acute alcohol poisoning (N = 693) or chronic alcoholism (N = 825), according to the forensic pathology report. Among acute alcohol poisonings were 529 men (76%) with mean age 53 years and 164 women (24%) with mean age 53 years. In the chronic alcoholism deaths were 705 men (85%) with mean age 55 years and 120 women (15%) with mean age 57 years. The blood-ethanol concentrations were not related to the person's age (r = -0.17 in acute poisonings and r = -0.09 in chronic alcoholism). The distribution of blood-ethanol concentrations in acute poisoning cases agreed with a normal or Gaussian curve with mean, median, standard deviation, coefficient of variation, and spread of 0.36 g/100 mL, 0.36 g/100 mL, 0.086 g/100 mL, 24% and 0.074 to 0.68 g/100 mL, respectively. The corresponding concentrations of ethanol in chronic alcoholism deaths were not normally distributed and showed a mode between 0.01 and 0.05 g/100 mL and mean, median, and spread of 0.172 g/100 mL, 0.150 g/100 mL, and 0.01 to 0.56 g/100 mL, respectively. The 5th and 95th percentiles for blood-ethanol concentration in acute poisoning deaths were 0.22 and 0.50 g/100 mL, respectively. However, these values are probably conservative estimates of the highest blood-ethanol concentrations before death owing to metabolism of ethanol until the time of death. In 98 chronic alcoholism deaths (12%) there was an elevated concentration of acetone in the blood (>0.01 g/100 mL), and 50 of these (6%) also had elevated isopropanol (>0.01 g/100 mL). This compares with 28 cases (4%) with elevated blood-acetone in the acute poisoning deaths and 22 (3%) with elevated blood-isopropanol. We offer various explanations for the differences in blood-ethanol and blood-acetone in acute poisoning and alcoholism deaths such as chronic tolerance, alcohol-related organ and tissue damage (cirrhosis, pancreatitis), positional asphyxia or suffocation by inhalation of vomit, exposure to cold coupled with alcohol-induced hypothermia, as well as various metabolic disturbances such as hypoglycemia and ketoacidosis.  相似文献   

14.
In mid 2009 Victoria introduced compulsory drug testing of blood taken from all injured drivers taken to hospital. Δ(9)-Tetrahydrocannabinol (THC), methylamphetamine (MA) and 3,4-methylenedioxy-methylamphetamine (MDMA) are prohibited and if drivers are positive to any amount an automatic penalty is enforced. Laboratory screens were conducted on preserved blood using ELISA testing for cannabis metabolite and methylamphetamines and a fully validated LC-MS/MS method for 105 drugs including THC, amphetamines, opioids, benzodiazepines, antidepressants and antipsychotics and a number of other psychoactive substances using a minimum of two transitions per drug. Conventional GC-testing for ethanol was used to screen and quantify the presence of alcohol. 1714 drivers were tested and showed alcohol in 29% (≥ 0.01 g/100mL) and drugs in 35%. The positive rate for the three drugs prohibited by legislation was 12.5%. The prevalence of THC, MA and MDMA was 9.8%, 3.1%, and 0.8%, respectively. The range of THC concentrations in blood was 2-42 ng/mL (median 7) of which 70% had a concentration of 10 ng/mL or higher. The range of concentrations for MA and MDMA was 0.02-0.4 and 0.03-0.3mg/L (median for both drugs was 0.05 mg/L). Drugs of any type were detected in 35% of cases. The other drugs were largely prescribed drugs such as the antidepressants (9.3%) and benzodiazepines (8.9%). Neither 6-acetylmorphine nor cocaine (or benzoylecgonine) was detected in these cases.  相似文献   

15.
The purpose of this study was to compare blood fentanyl concentrations in fentanyl-related deaths with fentanyl concentrations found incidentally at autopsy, as well as with fentanyl concentrations found in hospitalized patients receiving fentanyl. Between the years 1997 to 2005, 23 fentanyl-positive postmortem cases were identified. Nineteen of 23 (82.6%) cases were deemed to be drug overdoses. Fentanyl alone was responsible for 8 of the 19 (42.1%) overdose deaths. Mean and median fentanyl concentrations were 36 (SD 38) microg/L and 22 microg/L, respectively, range 5-120 microg/L. Seven of the cases were accidental, one undetermined. The remaining 11 of the 19 (57.9%) cases were mixed drug overdoses. Fentanyl concentrations in these cases were 31 (SD 46) microg/L, range 5-152 microg/L. All of the mixed drug overdoses were determined to be accidental. Four cases where fentanyl was considered an incidental postmortem finding were determined to be natural deaths. In hospitalized inpatients (n = 11) receiving fentanyl 2 of the patients receiving fentanyl for chronic pain for more than 3 months had concentrations of 8.5 microg/L and 9.9 microg/L. The other nine inpatient concentrations were less than 4 microg/L. In conclusion, blood fentanyl concentrations found in cases where fentanyl alone was determined to be the cause of death were similar to cases where fentanyl was part of a mixed drug overdose. There was also considerable overlap between fentanyl concentrations in fentanyl-related overdose deaths compared to hospitalized patients being treated for chronic pain. Fentanyl concentrations in postmortem cases must be interpreted in the context of the deceased's past medical history and autopsy findings.  相似文献   

16.
The death of a 72-year-old woman with respiratory debilitation due to bronchogenic carcinoma is described. She overdosed herself with probably 200 to 350 mg of zopiclone. Zopiclone, quantitated by HPLC in femoral postmortem blood, was found to be 1.9 mg/L (4.8 micromol/L). This level is higher than many other zopiclone fatalities reported. We report a case where only zopiclone was detected.  相似文献   

17.
This paper presents 21 cases related to cyanide intoxication by oral ingestion. Cyanide concentrations in biological specimens are especially different from the type of postmortem specimens, and very important in interpreting the cause of death in postmortem forensic toxicology. Besides the detection of cyanide in autopsy specimens, the autopsy findings were unremarkable. Biological samples (0.2mL or equal to less than 10μg of cyanide) were analyzed colorimetrically for cyanide. In a series of 21 cyanide fatalities, the concentration ranges (mean±SD) of cyanide in heart blood, peripheral blood and gastric contents were 0.1-248.6mg/L (38.1±56.6mg/L), 0.3-212.4mg/L (17.1±45.1mg/L) and 2.0-6398.0mg/kg (859.0±1486.2mg/kg), respectively. The ranges of the heart/peripheral blood concentration ratio and gastric contents/peripheral blood concentration ratio were 0.3-10.6 (mean 3.4) and 3.4-402.4 (mean 86.0), respectively. From the difference of cyanide concentration and the concentration ratio of cyanide in different types of postmortem specimens, the possibility of the postmortem redistribution of cyanide and death by oral ingestion of cyanide could be confirmed. We reported cyanide fatal cases along with a review of literature.  相似文献   

18.
Phenazepam is a long-acting benzodiazepine that, unlike other benzodiazepines, is currently not scheduled as a narcotic in Finland, most other European countries or the USA. It is used as an anxiolytic, sedative-hypnotic and anti-epileptic, mainly in Russia. In Finland, as well as in some other countries, an increase in the unauthorized use of phenazepam has been observed in recent years. In the one year period between July 1, 2010 and June 30, 2011 the prevalence of phenazepam in Finland was assessed among drivers apprehended for driving under the influence of drugs (DUID), in medico-legal autopsy cases and in police confiscations of illicit drugs. In DUID cases an LC-MS/MS method preceded by solid phase extraction was used for the determination of phenazepam. In the post-mortem investigations the sample preparation consisted of liquid-liquid extraction followed by derivatization and the determination was carried out by GC-MS. The police confiscations were analysed by GC-MS. There were 141 positive phenazepam cases among apprehended drivers, representing approximately 3.5% of all confirmed drug cases (n=4007) in this time period. The median (range) phenazepam blood concentration in DUID cases was 0.061 mg/L (0.004-3.600 mg/L). The median phenazepam concentration in cases with no concomitant stimulant use was significantly higher than the overall median concentration. Phenazepam was found in 17 medico-legal autopsy cases and the median (range) blood concentration was 0.048 mg/L (0.007-1.600 mg/L). Phenazepam was not considered by the medico-legal team to be the sole cause of death in any of the cases, the majority of them being accidental opiod overdoses. There were 26 seizures of phenazepam by the Police in the time period studied, some of the batches consisted of a mixture of phenazepam and stimulant designer drugs. The data show that phenazepam abuse is a widespread phenomenon in Finland. A typical user was a male multi-drug user in his 30s. The concentration range of phenazepam among apprehended drivers and medico-legal autopsy cases was wide and the drug was usually found along with other psychoactive drugs. Therefore, although it seems likely that phenazepam contributed to impairment of driving in some DUID cases, the extent of its effect remains unclear and further studies are needed to define the concentrations causing impairment and toxicity.  相似文献   

19.
The study was performed to distinguish fatal from non-fatal blood concentrations of morphine. For this purpose, blood levels of free morphine and total morphine (free morphine plus morphine conjugates) in 207 cases of heroin-related deaths were compared to those in 27 drivers surviving opiate intoxication. The majority of both survivors and non-survivors were found to show a concomitant use of depressants including alcohol or stimulants. Blood morphine levels in both groups varied widely, with a large area of overlap between survivors (free morphine: 0-128 ng/ml, total morphine: 10-2,110 ng/ml) and non-survivors (free morphine: 0-2,800 ng/ml, total morphine: 33-5,000 ng/ml). Five (18.5%) survivors and 87 (42.0%) non-survivors exhibit intoxication only by morphine. In these cases, too, both groups overlapped (survivors-free morphine: 28-93 ng/ml, total morphine: 230-1,451 ng/ml; non-survivors-free morphine: 0-2,800 ng/ml, total morphine: 119-4,660 ng/ml). Although the blood levels of free or total morphine do not allow a reliable prediction of survival versus non-survival, the ratio of free/total morphine may be a criterion to distinguish lethal versus survived intoxication. The mean of the ratio of free to total morphine for all lethal cases (N=207) was 0.293, for those that survived (N=27) 0.135, in cases of intoxication only by morphine 0.250 (N=87) and 0.080 (N=5), respectively. Applying a cut-off of 0.12 for free/total morphine and performing ROC analyses, fatal outcome can be predicted in 80% of the cases correctly, whereas 16% of the survivors were classified as dead. Nevertheless, in this study, all cases with a blood concentration of 200 ng/ml and more of free morphine displayed a fatal outcome.  相似文献   

20.
Quetiapine is a new atypical antipsychotic that was approved in 1997 by the U.S. Food and Drug Administration for the treatment of schizophrenia. It possesses a high affinity for 5-HT2 receptors and a low affinity for D1 and D2 dopamine receptors. Because quetiapine has only been released recently to the U.S. market, little information exists regarding therapeutic, toxic, and lethal concentrations. This study reports the detection of quetiapine in 13 postmortem cases. Following a basic liquid-liquid extraction, quetiapine was identified and quantitated by capillary gas chromatography with nitrogen phosphorus detection. Confirmation was accomplished by full scan electron impact gas chromatography/mass spectrometry. Heart blood quetiapine concentrations ranged from 0.07 to 18.37 mg/L (N = 12, mean +/- SD = 3.42 +/- 5.67, median 0.62) and femoral blood concentrations ranged from 0.06 to 19.25 mg/L (N = 10. mean +/- SD = 3.89 +/- 6.12, median 0.81). The average heart blood/femoral blood ratio was 1.31 (range 0.55 to 2.57, N = 10). Urine, bile, and gastric contents were assayed in all cases in which they were submitted. In three cases, the cause of death was determined to be quetiapine toxicity. In these cases heart blood concentrations ranged from 0.72 to 18.37 mg/L (N = 3). These data may provide a basis for establishing levels associated with quetiapine toxicity as well as therapeutic concentrations in postmortem specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号