首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of seventeen subjects were administered breath tests with alcohol dosed tobacco to see if there was an interference with the evidentiary breath testing. Fourteen subjects provided one set of two breath samples without the dosed tobacco followed by a set of two breath samples with the dosed tobacco. The other three subjects provided one breath sample without the dosed tobacco and then one breath sample with the dosed tobacco within the same testing sequence. Eight subjects had breath test readings of 0.00g/210L with the dosed tobacco. Mouth alcohol was detected with the dosed tobacco in six of the subjects, and a reading of 0.01g/210L, 0.04g/210L, and 0.05g/210L were found in five of the subjects. If the officer follows the directive of checking the mouth for a foreign substance and following a 15-20min observation/deprivation period, a false positive result will likely be avoided. If the officer does not find tobacco when checking the mouth for a foreign substance, and dosed tobacco is present during the breath test, most likely there would not be a measurable amount of alcohol to report or there would be a mouth alcohol reading from the sample.  相似文献   

2.
Seven subjects participated in a two-part study to evaluate mouth alcohol dissipation in alcohol positive subjects. In part one, subjects rinsed their mouths with a vodka solution and were breath tested after 1, 2, 3, 4, and 5 min intervals. On average, breath alcohol concentration (BrAC) decreased 20.4% (range 3.2-47.9%) between 1 and 2 min after rinsing. In part two of the study, multiple breath tests were administered after rinsing once with the vodka solution. The BrAC decreased more than 0.020 g/210 L between the first and second tests for all subjects (average 0.095 g/210 L, range 0.021-0.162 g/210 L). The average time for subjects to reach their unbiased BrAC was 9.35 min (range 4-13 min) after rinsing. This study reaffirms the need for duplicate breath testing and confirms that the minimum of a 15-min observation period is sufficient for mouth alcohol to dissipate in alcohol positive subjects.  相似文献   

3.
The State of Michigan uses the Datamaster as an evidential breath testing device. The newest version, the DMT, will replace current instruments in the field as they are retired from service. The Michigan State Police conducted comparison studies to test the analytical properties of the new instrument and to evaluate its response to conditions commonly cited in court defenses. The effects of mouth alcohol, objects in the mouth, and radiofrequency interference on paired samples from drinking subjects were assessed on the DMT. The effects of sample duration and chemical interferents were assessed on both instruments, using drinking subjects and wet-bath simulators, respectively. Our testing shows that Datamaster and DMT results are essentially identical; the DMT gave accurate readings as compared with measurements made using simulators containing standard ethanol solutions and that the DMT did not give falsely elevated breath alcohol results from any of the influences tested.  相似文献   

4.
This study was undertaken to determine if the application of alcohol‐based hand sanitizers (ABHSs) to the hands of a breath test operator will affect the results obtained on evidential breath alcohol instruments (EBTs). This study obtained breath samples on three different EBTs immediately after application of either gel or foam ABHS to the operator's hands. A small, but significant, number of initial analyses (13 of 130, 10%) resulted in positive breath alcohol concentrations, while 41 samples (31.5%) resulted in a status code. These status codes were caused by ethanol vapors either in the room air or their inhalation by the subject, thereby causing a mouth alcohol effect. Replicate subject samples did not yield any consecutive positive numeric results. As ABHS application can cause a transitory mouth alcohol effect via inhalation of ABHS vapors, EBT operators should forego the use of ABHS in the 15 min preceding subject testing.  相似文献   

5.
Duplicate breath alcohol testing from each individual provides confidence in the results when reasonable agreement (i.e. +/- 0.02 g/210 L) is achieved. For this reason many jurisdictions require duplicate testing. The State of Washington has recently implemented an infrared breath testing program and now requires two breath samples from each individual. Statistical analysis of 1847 duplicate breath tests is presented. Three variables are analyzed: first alcohol result (ALC1), the absolute difference between the two breath samples (DIFFA), and the signed difference between the two breath samples (DIFFS). The first breath alcohol result ranged from 0.021 to 0.338 g/210 L with a mean of 0.157 g/210 L. The absolute difference ranged from 0.00 to 0.05 g/210 L. The signed difference ranged from -0.05 g/210 L to 0.05 g/210 L. The absolute difference was regressed upon the first alcohol result and resulted in poor linear correlation of r = 0.212. Duplicate breath test differences do not appear to be a function of subject's alcohol level, but rather of sample provision.  相似文献   

6.
Abstract: Between 2003 and 2009, 54,255 breath test sequences were performed on 129 AlcoSensor IV–XL evidential instruments in Orange County, CA. The overall mean breath alcohol concentration and standard deviation from these tests was 0.141 ± 0.051 g/210 L. Of these test sequences, 38,580 successfully resulted in two valid breath alcohol results, with 97.5% of these results agreeing within ±0.020 g/210 L of each other and 86.3% within ±0.010 g/210 L. The mean absolute difference between duplicate tests was 0.006 g/210 L with a median of 0.004 g/210 L. Of the 2.5% of duplicate test results that did not agree within ±0.020 g/210 L, 95% of these had a breath alcohol concentration of 0.10 g/210 L or greater and 77% had an alcohol concentration of 0.15 g/210 L or greater. The data indicate that the AlcoSensor IV–XL can measure a breath sample for alcohol concentration with adequate precision even amid the effects of biological variations.  相似文献   

7.
Paired blood and breath alcohol concentrations (BAC, in g/dL, and BrAC, in g/210 L), were determined for 11,837 drivers apprehended by the New Zealand Police. For each driver, duplicate BAC measurements were made using headspace gas chromatography and duplicate BrAC measurements were made with either Intoxilyzer 5000, Seres 679T or Seres 679ENZ Ethylometre infrared analysers. The variability of differences between duplicate results is described in detail, as well as the variability of differences between the paired BrAC and BAC results. The mean delay between breath and blood sampling was 0.73 h, ranging from 0.17 to 3.1 8h. BAC values at the time of breath testing were estimated by adjusting BAC results using an assumed blood alcohol clearance rate. The paired BrAC and time-adjusted BAC results were analysed with the aim of estimating the proportion of false-positive BrAC results, using the time-adjusted BAC results as references. When BAC results were not time-adjusted, the false-positive rate (BrAC>BAC) was 31.3% but after time-adjustment using 0.019 g/dL/h as the blood alcohol clearance rate, the false-positive rate was only 2.8%. However, harmful false-positives (defined as cases where BrAC>0.1 g/210L, while BAC< or =0.1g/dL) occurred at a rate of only 0.14%. When the lower of duplicate breath test results were used as the evidential results instead of the means, the harmful false-positive rate dropped to 0.04%.  相似文献   

8.
The potential for breath freshener strips to interfere with the accuracy of a breath alcohol test was studied. Twelve varieties of breath freshener strips from five manufacturers were examined. Breath tests were conducted using the infrared based BAC DataMaster or the fuel cell based Alco-Sensor IV-XL, 30 and 150 seconds after placing a breath strip on the tongue. No effect was observed using the Alco-Sensor system. Some of the strips gave a small reading at 30 seconds (less than or equal to 0.010 g/210 L apparent alcohol) using the DataMaster. Readings on the DataMaster returned to zero by the 150 second test. A proper pre-test observation and deprivation period should prevent any interference from breath freshener strips on breath alcohol testing.  相似文献   

9.
In some countries, it is illegal to drive with any detectable amount of alcohol in blood; in others, the legal limit is 0.5 g/L or lower. Recently, some defendants charged with driving under the influence of alcohol and have claimed that positive breath alcohol test results were due to the ingestion of homeopathic mother tinctures. These preparations are obtained by maceration, digestion, infusion, or decoction of herbal material in hydroalcoholic solvent. A series of tests were conducted to evaluate the alcoholic content of three homeopathic mother tinctures and their ability to produce inaccurate breath alcohol results. Nine of 30 subjects gave positive results (0.11–0.82 g/L) when tests were taken within 1 min after drinking mother tincture. All tests taken at least 15 min after the mother tincture consumption and resulted in alcohol-free readings. An observation period of 15–20 min prior to breath alcohol testing eliminates the possibility of false-positive results.  相似文献   

10.
Mouth alcohol, if present in high enough concentrations, can falsely bias the accurate measurement of end-expiratory breath alcohol. Mouth alcohol will be eliminated over time, however, and can be modeled with a single term decaying exponential of the form: B0e-kt + C. It is important, however, to determine the model and its parameters when alcohol is already present within the biologic system. Using three individuals as their own controls, mouth alcohol was administered both before and after alcohol consumption followed by breath alcohol analysis performed at approximately 0.5 min intervals. The results showed that both model parameters (B0 and k) are effected and that the asymptotic value (C) is reached much sooner when alcohol already exists in the end-expiratory breath. Considering only three individuals were involved, the forensic-science importance appears to be that, as the end-expiratory breath alcohol concentration increases, the time necessary for the mouth alcohol to decrease to unbiased levels is decreased. Fifteen min of observation time prior to breath alcohol analysis appears to be more than adequate at forensically relevant concentrations.  相似文献   

11.
A total of 24 alcohol-free, denture-wearing subjects were tested for mouth-alcohol retention times with an Intoxilyzer 5000. The subjects were given 30 mL doses of 80 proof brandy to swish in their mouths without swallowing for 2 min prior to expectorating the dose. Subjects were tested under three conditions: 1) with dentures removed, 2) with dentures held loosely in place without an adhesive, and 3) with dentures plus an adhesive. Beyond 20 min following expectoration, mouth alcohol made no significant contribution to the apparent breath alcohol concentration (BrAC), with trace (less than or equal to 0.01 g/210 L) readings found in only two of the subjects. Denture use, both with and without the concurrent use of adhesives does not significantly affect BrAC as long as a pretest alcohol deprivation period of 20 min is observed.  相似文献   

12.
Random error is associated with breath alcohol measurements, as with all analytical methods. The total random uncertainty of a group of n measurements is typically determined by computing the standard deviation and requiring it to be less than some appropriate level (i.e., +/- 0.0042 g/210 l). The total random uncertainty has two primary sources; the instrumental method and the sample source. These are typically inseparable values. In breath alcohol testing the two primary sample sources are simulators and human breath. The present study evaluates ten groups of simulator samples consisting of ten measurements each on BAC Verifier Datamaster instruments. The data also includes ten breath alcohol measurements from each of 21 individuals following alcohol consumption. The range of standard deviations for the simulator samples was 0.0003-0.0022 g/210 l. The range of standard deviations for the human breath samples was 0.0015-0.0089 g/210 l. Two statistics that test for homogeneity for variances were applied. The simulator samples resulted in a Cochran's C test of 0.5000 and an Fmax test of 48.9. The human breath samples resulted in a Cochran's C test of 0.1519 and an Fmax test of 27.3. All were significant at P less than 0.001. The statistical tests demonstrated that the intragroup variability among the human subjects was comparable to the intragroup variability among the simulator samples. The data also demonstrates that the sample source (simulator or human) is probably the largest contributor to total random uncertainty. Therefore, when duplicate breath alcohol testing from individuals shows variability in the second decimal place the cause is differences in breath samples provided and not instrumental imprecision.  相似文献   

13.
Gastroesophageal reflux disease (GERD) is widespread in the population among all age groups and in both sexes. The reliability of breath alcohol analysis in subjects suffering from GERD is unknown. We investigated the relationship between breath-alcohol concentration (BrAC) and blood-alcohol concentration (BAC) in 5 male and 5 female subjects all suffering from severe gastroesophageal reflux disease and scheduled for antireflux surgery. Each subject served in two experiments in random order about 1-2 weeks apart. Both times they drank the same dose of ethanol (approximately 0.3 g/kg) as either beer, white wine, or vodka mixed with orange juice before venous blood and end-expired breath samples were obtained at 5-10 min intervals for 4 h. An attempt was made to provoke gastroesophageal reflux in one of the drinking experiments by applying an abdominal compression belt. Blood-ethanol concentration was determined by headspace gas chromatography and breath-ethanol was measured with an electrochemical instrument (Alcolmeter SD-400) or a quantitative infrared analyzer (Data-Master). During the absorption of alcohol, which occurred during the first 90 min after the start of drinking, BrAC (mg/210 L) tended to be the same or higher than venous BAC (mg/dL). In the post-peak phase, the BAC always exceeded BrAC. Four of the 10 subjects definitely experienced gastric reflux during the study although this did not result in widely deviant BrAC readings compared with BAC when sampling occurred at 5-min intervals. We conclude that the risk of alcohol erupting from the stomach into the mouth owing to gastric reflux and falsely increasing the result of an evidential breath-alcohol test is highly improbable.  相似文献   

14.
Drunk driving is a serious threat to public safety. All available and appropriate tools for curbing this threat should be employed to their full extent. The handheld pre‐arrest breath test instrument (PBT) is one tool for identifying the alcohol‐impaired driver and enforcing drunk driving legislation. A set of data was evaluated (n = 1779) where the PBT instrument was employed in drunk driving arrests to develop a multivariate predictive model. When maintained and operated by trained personnel, the PBT provides a reasonable estimate of the evidential test result within the relevant forensic range (95% prediction interval:  ± 0.003 g/210 L). ROC analysis shows that a multivariate model for PBT prediction of the evidentiary alcohol concentration above versus below the legal limit of 0.08 g/210 L has excellent performance with an AUC of 0.96. These results would be of value in evidential hearings seeking to admit the PBT results in drunk driving trials.  相似文献   

15.
Until 1986, commercially-available infrared breath alcohol analysing instruments employed wavelengths in the region of 3.4 mu. The move to the 9.5 mu region in the Dr?ger Alcotest 7110 promised greater discrimination against endogenous compounds such as acetone. The present study confirmed that acetone interference is insignificant and that in terms of in vitro accuracy and precision, the ten 7110 units tested were superior to the Breathalyzer 900, the instruments they will replace for evidential testing in South Australia. The new unit meets the South Australian Police demand for portability and its shielding prevents interference fron any of the common radio frequency transmissions in Adelaide when operating as near to the source as possible. Comparisons of breath results (monthly averages) and their corresponding blood results accumulated during the first few months of operation showed no bias between the two techniques.  相似文献   

16.
Five Intoxilyzer 4011AS-As were tested for their response to eleven chemicals and one mixture of chemicals. The air/water partition ratios were also determined for these eleven chemicals and one mixture. The chemicals tested and their approximate partition ratios were the following: acetaldehyde (190:1), acetone (341:1), acetonitrile (578:1), isoprene (1:1), isopropanol (1671:1), methanol (3229:1), methylene chloride (11:1), methyl ethyl ketone (229:1), toluene (5.5:1), 1,1,1-trichloroethane (14:1), trichloroethylene (20:1), and a 50:50 mixture of 1,1,1-trichloroethane and trichloroethylene (14:1). Of the eleven chemicals and one mixture studied during this experiment, only three, isopropanol, toluene, and methyl ethyl ketone, could reasonably interfere with the test, and then only under unusual circumstances--those circumstances being a slight additive effect to a breath ethanol concentration near the level required for prosecution. Any substantial additive effect from these three substances would illuminate the interference light which invalidates the test. The mean illumination point of the interference light was 0.0286 g/210 L for methyl ethyl ketone, 0.0294 for toluene, and between 0.0116 and 0.0292 for the apparent alcohol concentration for isopropanol, depending on the amount of isopropanol metabolized to acetone. Even with these unusual circumstances considered, the Intoxilyzer 4011AS-A must be viewed as an effective way of determining the ethanol concentration in human breath for evidential purposes.  相似文献   

17.
The stability of ethanol in antemortem blood stored under various conditions has been widely studied. Antemortem blood samples stored at refrigerated temperature, at room temperature, and at elevated temperatures tend to decrease in ethanol concentration with storage. It appears that the stability of ethanol in blood exposed to temperatures greater than 38°C has not been evaluated. The case presented here involves comparison of breath test results with subsequent analysis of blood drawn at the time of breath testing. However, the blood tubes were in a refrigerator fire followed by refrigerated storage for 5 months prior to analysis by headspace gas chromatography. The subject’s breath was tested twice using an Intoxilyzer 8000. The subject’s blood was tested in duplicate using an Agilent headspace gas chromatograph. The measured breath ethanol concentration was 0.103 g/210 L and 0.092 g/210 L. The measured blood ethanol concentration was 0.0932 g/dL for both samples analyzed. Although the mean blood test result was slightly lower than the mean breath test result, the mean breath test result was within the estimated uncertainty of the mean blood test result. Even under the extreme conditions of the blood kit being in a refrigerator fire, the measured blood ethanol content agreed well with the paired breath ethanol test.  相似文献   

18.
A large number of people suffer from the heartburn symptoms associated with gastroesophageal reflux disease (GERD). Relatively little has been published on its potential for biasing a breath alcohol measurement. The present case describes an individual (white male, aged 23) who experimentally consumed 1.0 g/kg of an alcohol beverage and subsequently provided breath and blood samples for analysis. Breath expirograms were also collected following several different preexhalation breathing maneuvers. Shortly after the end of drinking the mean of replicate breath alcohol results exceeded that of the corresponding venous blood alcohol. A later paired comparison (during the postabsorptive phase) showed the blood alcohol to exceed the breath. None of the expirograms provided evidence that "mouth alcohol" due to gastroesophageal reflux had biased any test results. People with GERD can provide biased-free end-expiratory breath alcohol results where sound forensic practice is followed, which includes: 15-min. preexhalation observation, duplicate testing, instrumental detection systems, and trained alert operators who ask appropriate questions and watch for associated signs.  相似文献   

19.
The evaluation of breath alcohol instruments for forensic suitability generally includes the assessment of accuracy, precision, linearity, blood/breath comparisons, etc. Although relevant and important, these methods fail to evaluate other important analytical and biological components related to measurement variability. An experimental design comparing different instruments measuring replicate breath samples from several subjects is presented here. Three volunteers provided n = 10 breath samples into each of six different instruments within an 18 minute time period. Two-way analysis of variance was employed which quantified the between-instrument effect and the subject/instrument interaction. Variance contributions were also determined for the analytical and biological components. Significant between-instrument and subject/instrument interaction were observed. The biological component of total variance ranged from 56% to 98% among all subject instrument combinations. Such a design can help quantify the influence of and optimize breath sampling parameters that will reduce total measurement variability and enhance overall forensic confidence.  相似文献   

20.
A new breath alcohol (ethanol) analyzer has been developed, which allows free exhalation, standardizes measured exhaled alcohol concentration to fully saturated water vapor at a body temperature of 37 degrees C (43.95 mg/L) and includes a built-in self-calibration system. We evaluated the performance of this instrument by comparing standardized alcohol concentration in freely expired breath (BrAC) with arterial (ABAC) and venous (VBAC) blood alcohol concentrations in fifteen healthy volunteers who drank 0.6 g of alcohol per kg body weight. The precision (coefficient of variation, CV) of the analyzer based on in vivo duplicate measurements in all phases of the alcohol metabolism was 1.7%. The ABAC/BrAC ratio was 2251+/-46 (mean+/-S.D.) in the post-absorptive phase and the mean bias between ABAC and BrAC x 2251 was 0.0035 g/L with 95% limits of agreement of 0.033 and -0.026. The ABAC and BrAC x 2251 were highly correlated (r=0.998, p<0.001) and the regression relationship was ABAC = 0.00045 + 1.0069 x (BrAC x 2251) indicating excellent agreement and no fixed or proportional bias. In the absorption phase, ABAC exceeded BrAC x 2251 by at most 0.04+/-0.03 g/L when tests were made at 10 min post-dosing (p<0.05). The VBAC/BrAC ratio never stabilized and varied continuously between 1834 and 3259. There was a proportional bias between VBAC and BrAC x 2251 (ABAC) in the post-absorptive phase (p<0.001). The pharmacokinetic analysis of the elimination rates of alcohol and times to zero BAC confirmed that BrAC x 2251 and ABAC agreed very well with each other, but not with VBAC (p<0.001). We conclude that this new breath analyzer using free exhalation has a high precision for in vivo testing. The BrAC reflects very accurately ABAC in the post-absorption phase and substantially well in the absorption phase and thereby reflects the concentration of alcohol reaching the brain. Our findings highlight the magnitude of arterio-venous differences in alcohol concentration and support the use of breath alcohol analyzers as a stand-alone test for medical and legal purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号