首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bavarian State Bureau of Investigation in Munich has the exclusive responsibility for investigation of criminal acts. One considerable expertise is that of hair analysis. According to the legal system in Germany, there is a special interest when some clients' hair tested positive for illicit drugs. An accused with a lot of drugs in his hair will be treated as a supposed addict and will be guaranteed extenuating circumstances. The instrumentation used for hair analysis is a powerful analytical tool: a Varian 3400 gas chromatograph linked to a Finnigan Tandem-MS (TSQ 700). The methanol extraction method is used for the detection of illegal drugs and metabolites: amphetamine, methamphetamine, MDA, MDMA (ecstasy), MDE, MBDB, methadone, THC, EDDP (metabolite of methadone), cocaine, benzoylecgonine, cocaethylene, opiates (dihydrocodeine, codeine, heroin, 6-monoacetylmorphine, morphine, acetylcodeine). For the detection of 9-carboxy-THC by negative chemical ionization the hair sample is hydrolyzed under alkaline conditions. Solid-phase extraction is used for clean-up. The LOQ for the determination of 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic-acid is 0.16 pg/mg hair. An unsurpassed combination for rendering an expert opinion based on hair analysis may be: a forensic expert using diligence and experience, coupled with the performance of a sophisticated analytical instrument.  相似文献   

2.
Hair testing for drugs of abuse is performed in Lombardy by eleven analytical laboratories accredited for forensic purposes, the most frequent purposes being driving license regranting and workplace drug testing. Individuals undergoing hair testing for these purposes can choose the laboratory in which the analyses have to be carried out. The aim of our study was to perform an interlaboratory exercise in order to verify the level of standardization of hair testing for drugs of abuse in these accredited laboratories; nine out of the eleven laboratories participated in this exercise. Sixteen hair strands coming from different subjects were longitudinally divided in 3-4 aliquots and distributed to participating laboratories, which were requested to apply their routine methods. All the participants analyzed opiates (morphine and 6-acetylmorphine) and cocainics (cocaine and benzoylecgonine) while only six analyzed methadone and amphetamines (amphetamine, methamphetamine, MDMA, MDA and MDEA) and five Δ(9)-tetrahydrocannabinol (THC). The majority of the participants (seven labs) performed acidic hydrolysis to extract the drugs from the hair and analysis by GC-MS, while two labs used LC-MS/MS. Eight laboratories performed initial screening tests by Enzyme Multiplied Immunoassay Technique (EMIT), Enzyme-linked Immunosorbent Assay (ELISA) or Cloned Enzyme Donor Immunoassay (CEDIA). Results demonstrated a good qualitative performance for all the participants, since no false positive results were reported by any of them. Quantitative data were quite scattered, but less in samples with low concentrations of analytes than in those with higher concentrations. Results from this first regional interlaboratory exercise show that, on the one hand, individuals undergoing hair testing would have obtained the same qualitative results in any of the nine laboratories. On the other hand, the scatter in quantitative results could cause some inequalities if any interpretation of the data is required.  相似文献   

3.
Phentermine (PT) has been widely used as an anti-obesity drug. This drug has to be used with caution due to its close resemblance with amphetamines in its structure and toxicity profile. Recently, PT is in distribution by illegal modes and is found to be available through sources such as the internet, thus their misuse and/or abuse is threatening to be a serious social issue. In the present study, 32 cases of drug suspects were observed for PT abuse, detected using hair samples for drug analysis. PT and other amphetamines, such as methamphetamine (MA), amphetamine (AP), 3,4-methylenedioxyamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA), were extracted using 1% HCl in methanol for 20 h at 38°C. The extracts were derivatized with trifluoroacetic anhydride (TFAA) and analyzed using gas chromatography/mass spectrometry (GC/MS). Among the 32 cases of PT abuse, MA and its main metabolite, AP were identified in seven cases and MDMA and its main metabolite, MDA were detected in two other cases.  相似文献   

4.
A gas chromatography-mass spectrometry (GC-MS) method is described for the screening and detection of morphine, codeine, cocaine, benzoylecgonine, methylecgonine, cocaethylene, delta-9-tetrahydrocannabinol (THC), 11-nor-9-carboxy-THC (THC-COOH), 11-hydroxy-THC (11-OH-THC), amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymetamphetamine (MDMA) and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in small blood samples and bloodstains using solid phase SPE columns and a pipetting robot (Gilson Aspec XL). The detection limits are in the order of 1.62-4.10 ng/50 microl spot (amphetamines), 0.15-0.82 ng/50 microl spot (cannabinoids), 1.67-4.70 ng/50 microl spot (cocaine and derivatives) and 4.53-4.91 ng/50 microl spot (opiates) and the correlation factors are between 0.9957 and 0.9999. The method has proven useful in forensic cases with only small sample volumes or bloodstains.  相似文献   

5.
Drug use histories were collected from 100 subjects recruited from the "dance scene" in and around Glasgow, Scotland. In addition, each subject donated a hair sample which was analyzed by gas chromatography/mass spectrometry (GC/MS) for amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MD MA) and 3,4-methylenedioxyethylamphetamine (MDEA). The hair samples were analyzed in two 6 cm segments or in full, ranging from 1.5 to 12 cm depending on the length of the hair. Approximately 10 mg of hair was ground to a fine powder before treatment with beta-glucuronidase/aryl sulfatase. A solid-phase extraction procedure was carried out followed by derivatization with pentafluoropropionic anhydride (PFPA). All extracts were analyzed by gas chromatography/mass spectrometry (GC/MS). Of the 139 segments analyzed, 77 (52.5%) were positive for at least one of the five amphetamines. The drug concentrations found in the hair were compared with the self-reported drug histories. A concordance of greater than 50% was found between the self-report data and levels detected in hair. However, no correlation was found between the reported number of "ecstasy" tablets consumed and the drug levels detected in hair. An increase in the average drug levels measured was observed from low to high use (number of "ecstasy" tablets/month). A large number of false negatives and a low number of false positives were observed.  相似文献   

6.
A fast and simple method to detect some commonly abused illicit drugs, amphetamine, methamphetamine, 3,4-methylendioxy-amphetamine (MDA), 3,4-methylendioxy-methamphetamine (MDMA), 3,4-methylendioxy-N-ethylamphetamine (MDEA) and phencyclidine (PCP) in urine using solvent microextraction (SME) combined with gas chromatography (GC) analysis has been developed. The extraction is conducted by suspending a 2 microl drop of chloroform in a 2 ml urine sample. Following 8 min of extraction, the organic solvent is withdrawn into the syringe and injected into a GC with a pulsed discharge helium ionization detector (PDHID). The effects of different extraction solvents and times, pH and sample preparation were studied. The optimized method was capable of detecting drugs in urine at concentrations below Substance Abuse and Mental Health Services Administration (SAMHSA) established cut-off values for preliminary testing. Good linearity and reproducibility of extraction were obtained. The limits of detection were 0.5 microg/ml for amphetamine, 0.1 microg/ml for methamphetamine and MDA, 0.05 microg/ml for MDMA, 0.025 microg/ml for MDEA and 0.015 microg/ml for PCP. Relative standard deviation (R.S.D.) values ranged between 5 and 20% for the studied drugs.  相似文献   

7.
It has recently been reported that purity of illicit tablets of ecstasy (MDMA) is now high. Our objective was to confirm whether hair of drug users, who request only ecstasy from their supplier, contains MDMA in the absence of other drugs. GC-MS analysis of scalp hair segments disclosed the presence of MDMA in 19 of 21 subjects and amphetamine/methamphetamine in eight subjects. Surprisingly, seven subjects had hair levels of the MDMA metabolite, MDA, equal to or greater than those of MDMA, suggesting use of MDA in addition to that of MDMA. These amphetamine derivatives might be included by clandestine laboratories to enhance effects of the drug cocktail or because of a perception that MDA synthesis might be simpler than that of MDMA. Drug users and investigators examining possible brain neurotoxic effects of MDMA need to consider that "ecstasy" tablets can contain MDA and methamphetamine despite no demand for the drugs.  相似文献   

8.
It is known that US paper currency in the general circulation is contaminated with cocaine. Several mechanisms have been offered to explain this finding, including contamination due to handling during drug deals and the use of rolled up bills for snorting. Drug is then transferred from one contaminated bill to others during counting in financial institutions. The possibility of contamination of currency with other drugs has not been reported. In this study, the author reports the analysis of 10 randomly collected US$ 1 bills from five cities, for cocaine, heroin, 6-acetylmorphine (6-AM), morphine, codeine, methamphetamine, amphetamine and phencyclidine (PCP). Bills were immersed in acetonitrile for 2h prior to extraction and GC-MS analysis. Results showed that 92% of the bills were positive for cocaine with a mean amount of 28.75+/-139.07 microg per bill, a median of 1.37 microg per bill, and a range of 0.01-922.72 microg per bill. Heroin was detected in seven bills in amounts ranging from 0.03 to 168.50 microg per bill: 6-AM and morphine were detected in three bills; methamphetamine and amphetamine in three and one bills, respectively, and PCP was detected in two bills in amounts of 0.78 and 1.87 microg per bill. Codeine was not detected in any of the US$ 1 bills analyzed. This study demonstrated that although paper currency was most often contaminated with cocaine, other drugs of abuse may be detected in bills.  相似文献   

9.
A rapid and sensitive method using LC-MS/MS triple stage quadrupole for the determination of traces of amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"), 3,4-methylenedioxyethamphetamine (MDEA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in hair, blood and urine has been developed and validated. Chromatography was carried out on an Uptisphere ODB C(18) 5 microm, 2.1 mm x 150 mm column (Interchim, France) with a gradient of acetonitrile and formate 2 mM pH 3.0 buffer. Urine and blood were extracted with Toxitube A (Varian, France). Segmented scalp hair was treated by incubation 15 min at 80 degrees C in NaOH 1M before liquid-liquid extraction with hexane/ethyl acetate (2/1, v/v). The limits of quantification (LOQ) in blood and urine were at 0.1 ng/mL for all analytes. In hair, LOQ was <5 pg/mg for MA, MDMA, MDEA and MBDB, at 14.7 pg/mg for AP and 15.7 pg/mg for MDA. Calibration curves were linear in the range 0.1-50 ng/mL in blood and urine; in the range 5-500 pg/mg for MA, MDMA, MDEA and MBDB, and 20-500 pg/mg for AP and MDA. Inter-day precisions were <13% for all analytes in all matrices. Accuracy was <20% in blood and urine at 1 and 50 ng/mL and <10% in hair at 20 and 250 pg/mg. This method was applied to the determination of MDMA in a forensic case of single administration of ecstasy to a 16-year-old female without her knowledge during a party. She suffered from hyperactivity, sweating and agitation. A first sample of urine was collected a few hours after (T+12h) and tested positive to amphetamines by immunoassay by a clinical laboratory. Blood and urine were sampled for forensic purposes at day 8 (D+8) and scalp hair at day 60 (D+60). No MDMA was detected in blood, but urine and hair were tested positive, respectively at 0.42 ng/mL and at 22 pg/mg in hair only in the segment corresponding to the period of the offence, while no MDA was detectable. This method allows the detection of MDMA up to 8 days in urine after single intake.  相似文献   

10.
This work studies the distribution of cocaine and heroin metabolites in hair and urine of living polidrug abusers. Cocaine, benzoylecgonine (BEG), ecgonine methyl ester (EME), morphine, codeine and 6-monoacetylmorphine (6-MAM) were simultaneously extracted and analyzed by GC/MS in SIM mode. The results obtained show a different distribution of heroin and cocaine metabolites in urine and hair. In urine, we generally find BEG and EME for cocaine abuse, and morphine for heroin abuse. In hair, we detect cocaine and MAM as major metabolites for cocaine and heroin abuse, respectively.  相似文献   

11.
A fast and simple method to detect some commonly abused illicit drugs, amphetamine, methamphetamine, 3,4-methylendioxy-amphetamine (MDA), 3,4-methylendioxy-methamphetamine (MDMA), 3,4-methylendioxy-N-ethylamphetamine (MDEA) and phencyclidine (PCP) in urine using solvent microextraction (SME) combined with gas chromatography (GC) analysis has been developed. The extraction is conducted by suspending a 2 μl drop of chloroform in a 2 ml urine sample. Following 8 min of extraction, the organic solvent is withdrawn into the syringe and injected into a GC with a pulsed discharge helium ionization detector (PDHID).The effects of different extraction solvents and times, pH and sample preparation were studied. The optimized method was capable of detecting drugs in urine at concentrations below Substance Abuse and Mental Health Services Administration (SAMHSA) established cut-off values for preliminary testing. Good linearity and reproducibility of extraction were obtained. The limits of detection were 0.5 μg/ml for amphetamine, 0.1 μg/ml for methamphetamine and MDA, 0.05 μg/ml for MDMA, 0.025 μg/ml for MDEA and 0.015 μg/ml for PCP. Relative standard deviation (R.S.D.) values ranged between 5 and 20% for the studied drugs.  相似文献   

12.
A preliminary initial enzyme-linked immunosorbent assay (LUCIO-Direct ELISA kit) and a preliminary DRI enzyme immunoassay were evaluated for drug detection in head hair with respect to lowered cutoff values recommended in Germany for the control of abstinence in cases of re-granting of drivers' licences. Following drug classes were included: cannabinoids, opiates, cocaine like substances, amphetamine, methamphetamine (and methylenedioxyamphetamines), methadone, and benzodiazepines. 759 analyses were performed using LUCIO-Direct ELISA kits and 936 analyses using DRI enzyme immunoassay tests. Sample size for each drug group and immunoassay test reached from 74 to 178. The LUCIO-Direct ELISA kit revealed a sensitivity of 91% for amphetamine up to 98% for methadone (methamphetamine 92%, cocaine 94%, opiates 94%, benzodiazepines 96%) and values of specificity of 72% for methadone up to 89% for amphetamine and benzodiazepines. The test was not useful for a preliminary screening for tetrahydrocannabinol (sensitivity of 65%) in consideration of a suggested cutoff of 0.02 ng/mg. The DRI enzyme immunoassay test was only useful for morphine and cocaine testing at low recommended new cutoff values (0.1 ng/mg) revealing sensitivities of 94% and 99%, respectively.  相似文献   

13.
In our laboratory, analysis of human hair for the detection of drugs of abuse was first performed in 1995. Initially, requests for hair analysis were few, and it is only since 1997 that these analyses have become routine. As demand grew, we developed an automatic solid-phase extraction method; the use of a robot ASPEC allowed us to drop certain fastidious manipulations, and to treat a large number of samples at a time. This method is described, along with analysis by gas-chromatography-mass spectrometry (GC/MS) in selected ion monitoring mode (SIM), for the following drugs: codeine, 6-monoacetylmorphine (6-MAM), morphine, cocaine, methadone, ecstasy (MDMA) and Eve (MDE). This requires prior derivatization with propionic anhydride. The different validation parameters, linearity, repeatability, recovery and detection limits are described, as well as the application of this method to some real cases. Analysis of these cases is also performed by an ion trap GC/MS in chemical ionization mode (GC/IT/CI/MS) in order to demonstrate the usefulness of this technique as a complement to routine analysis. Analysis by GC/IT/CI/MS indeed avoids the risk of false-positive results by the identification of metabolites.  相似文献   

14.
One hundred and eighty-one 3,4-methylenedioxymethamphetamine (MDMA) containing tablets were sampled from confiscated drugs received by the Taiwan National Bureau of Controlled Drugs for testing from 2002 to February 2005. Sample tablets demonstrated various colors and logos. The appearances, contents of MDMA and other components in these tablets were analyzed in order to understand the characteristics and trends of MDMA use. Samples were analyzed using GC-MS methodology. Deuterated internal standards were used for drug quantification. The MDMA contents varied from 16 to 193 mg/tablet. 66-71% of the tablets seized each year contained only MDMA, and the content of MDMA in MDMA only tablets varied from 89 to 133 mg/tablet. There was a decreasing trend in MDMA content in these tablets over time. Other components commonly found besides MDMA included caffeine (18%), methamphetamine (7%), 3,4-methylenedioxyethylamphetamine (MDEA) (7%) and amphetamine (4%). 3,4-Methylenedioxyamphetamine (MDA), ketamine, ephedrine, diazepam, chlorzoxazone and nicotinamide were also detected. During the study period, the number of other drugs found as well as the combinations of different drugs detected in these tablets increased.  相似文献   

15.
Concentrations of unconjugated morphine, codeine and 6-acetylmorphine (6-AM), the specific metabolite of heroin, were determined in urine specimens from 339 individuals apprehended for driving under the influence of drugs (DUID) in Sweden. After an initial screening analysis by immunoassay for 5-classes of abused drugs (opiates, cannabinoids, amphetamine analogs, cocaine metabolite and benzodiazepines), all positive specimens were verified by more specific methods. Opiates and other illicit drugs were analyzed by isotope-dilution gas chromatography-mass spectrometry (GC-MS). The limits of quantitation for morphine, codeine and 6-AM in urine were 20 ng/mL. Calibration plots included an upper concentration limit of 1000 ng/mL for each opiate. We identified the heroin metabolite 6-AM in 212 urine specimens (62%) at concentrations ranging from 20 ng/mL to > 1000 ng/mL. The concentration of 6-AM exceeded 1000 ng/mL in 79 cases (37%) and 31 cases (15%) were between 20 and 99 ng/mL. When 6-AM was present in urine the concentration of morphine was above 1000 ng/mL in 196 cases (92%). The concentrations of codeine in these same urine specimens were more evenly distributed with 35% being above 1000 ng/mL and 21% below 100 ng/mL. These results give a clear picture of the concentrations of unconjugated morphine, codeine and 6-acetylmorphine that can be expected in opiate-positive urine specimens from individuals apprehended for DUID after taking heroin.  相似文献   

16.
A total of 137 urine samples and 46 serum samples, corresponding to 154 self-confessed designer drugs consumers in Ibiza island, were analyzed for the presence of designer drugs: amphetamine and amphetamine derivatives (methamphetamine, methylenedioxymethamphetamine (MDMA), methylenedioxyethylamphetamine (MDEA), methylenedioxyamphetamine (MDA), p-methoxymethylamphetamine (PMMA), p-methoxyamphetamine (PMA), etc.), ketamine and gamma-hydroxybutyric acid. Among this population, coming both from the forensic clinic and from the emergency room of a hospital, a total of 99 cases were found positive for some designer drug. This study shows the prevalence of methylenedioxymethamphetamine (MDMA) among designer drug users, sole or in association with other drugs. Also, the mixture of MDMA with other designer drugs, ethanol and/or cocaine is shown to be more likely to produce toxic symptoms requiring clinical attendance in a hospital emergency room. These findings along with the consumption history, the concentrations of drugs and metabolites in urine and serum and the toxicological significance for the interpretation of some MDMA metabolites such as 4-hydroxy-3-methoxymethamphetamine (HMMA) are discussed in this study.  相似文献   

17.
The prevalence and age distribution of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) in hair samples by gas chromatography/mass spectrometry (GC/MS) were studied. The recoveries obtained from hair were 97% and 99% for MDMA and MDA, respectively. The inter- and intra-assay precision and accuracy were determined. Out of 791 hair samples, 44 (5.6 %) contained MDMA and/or MDA. Out of these 44 subjects, urinalyses from 35 were negative for both MDMA and MDA, while only 9 were positive. We also evaluated concentrations of MDMA and MDA, and the metabolite-to-parent drug ratios. This study showed that the abuse of MDMA or MDA was found principally among young adults and male abusers. We found the epidemiology of ecstasy users in Korea between March 2002 and April 2003.  相似文献   

18.
There is no toxicological analysis of gamma-hydroxybutyrate (GHB) applied routinely in cases of driving under influence (DUI); therefore the extent of consumption of this drug might be underestimated. Its consumption is described as occurring often concurrently with amphetamine or ecstasy. This study examines 196 serum samples which were collected by police during road side testing for GHB. The samples subject to this study have already been found to be positive for amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA) and/or 3,4-methylenedioxyethamphetamine (MDEA). Analysis has been performed by LC/MS/MS in the multiple reaction monitoring (MRM) mode. Due to its polarity, chromatographic separation of GHB was achieved by a HILIC column. To differentiate endogenous and exogenous levels of GHB, a cut-off concentration of 4μg/ml was applied. Of the 196 samples, two have been found to be positive for GHB. Of these samples, one sample was also positive for amphetamine and one for MDMA. Whilst other amphetamine derivates were not detected in these samples, both samples were found to be positive for cannabinoids. These results suggest that co-consumption of GHB with amphetamine or ecstasy is relatively low (1%) for the collective of this study.  相似文献   

19.
A rapid, accurate, precise, reproducible, economical, and environmentally gentle method using capillary electrophoresis (CE) is presented for the routine analysis of methamphetamine, amphetamine, MDA, MDMA, MDEA, and cocaine in seized drugs. The methodology uses a 32 cm by 50 microm capillary (length to detector 23.5 cm) with a commercially available buffer kit and diode array UV detection. Dynamic coating of the capillary surface is accomplished by flushing with base for 1 min, a proprietary polycation for 1 min, and then a proprietary polyanion for 2 min. This approach provides a relatively high and stable electroosmotic flow (EOF), even at low pHs. The background electrolyte (BGE) contains 75 mM phosphate buffer (pH 2.5) with the same polyanion as above. Using this methodology, amphetamine, methamphetamine, MDA, MDMA, MDEA, and an internal standard (n-butylamphetamine) are baseline resolved in less than 5 min. The run-to-run migration time %RSDs and peak area %RSDs are typically <0.3% and <2.1%, respectively. The day-to-day and capillary-to-capillary migration time %RSDs are <1.5% and <2.1%, respectively. The %RSDs of the relative migration times compared with the internal standard on a day-to-day and capillary-to-capillary basis are <0.2% and <0.06%, respectively. The linear dynamic range using peak areas range from 0.003 to 0.10 mg/mL. The correlation coefficients are >0.9998, with all calibration curves passing at or near the origin. Similar data are obtained for cocaine and its internal standard henyltoloxamine. None of the compounds usually encountered in illicit samples interfere with the target compound (e.g., methamphetamine and cocaine) or the internal standard. Quantitative results for synthetic mixtures and seized exhibits are in good agreement with actual values, and also with results obtained from other techniques. The relatively high EOF for the dynamically coated capillary system allows for the screening of basic, acidic, and neutral adulterants in drug seizures; identification is facilitated by the use of automated UV library searches.  相似文献   

20.
A total of 137 urine samples and 46 serum samples, corresponding to 154 self-confessed designer drugs consumers in Ibiza island, were analyzed for the presence of designer drugs: amphetamine and amphetamine derivatives (methamphetamine, methylenedioxymethamphetamine (MDMA), methylenedioxyethylamphetamine (MDEA), methylenedioxyamphetamine (MDA), p-methoxymethylamphetamine (PMMA), p-methoxyamphetamine (PMA), etc.), ketamine and γ-hydroxybutyric acid. Among this population, coming both from the forensic clinic and from the emergency room of a hospital, a total of 99 cases were found positive for some designer drug. This study shows the prevalence of methylenedioxymethamphetamine (MDMA) among designer drug users, sole or in association with other drugs. Also, the mixture of MDMA with other designer drugs, ethanol and/or cocaine is shown to be more likely to produce toxic symptoms requiring clinical attendance in a hospital emergency room. These findings along with the consumption history, the concentrations of drugs and metabolites in urine and serum and the toxicological significance for the interpretation of some MDMA metabolites such as 4-hydroxy-3-methoxymethamphetamine (HMMA) are discussed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号