首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
Abstract:  Chemicals containing multiple peroxide functionalities, such as triacetone triperoxide (TATP), diacetone diperoxide (DADP), or hexamethylene triperoxide diamine (HMTD), can be explosive. They are impractical and are not used by legitimate military groups because they are shock and heat sensitive compared to military explosives. They are attractive to terrorists because synthesis is straightforward, requiring only a few easily obtained ingredients. Physical removal of these synthesis products is highly hazardous. This paper discusses methods to degrade peroxide explosives chemically, at room temperature. A number of mixtures containing metals (e.g., zinc, copper) and metal salts (e.g., zinc sulfate, copper chloride) were found effective, some capable of destroying TATP solutions in a few hours. Strong acids proved useful against solid peroxide materials; however, on a 1 g scale, addition of concentrated sulfuric acid caused TATP to detonate. Thus, this technique should only be used to destroy small-laboratory quantities.  相似文献   

2.
The goal of this paper is to describe applications of two recently developed HPLC methods for the analysis and confirmation of the presence of hydrogen peroxide residues in field studies. The procedure utilizes two different HPLC systems, one with post-column derivatization followed by fluorescence detection (HPLC/FD), and the other with electrochemical detection (HPLC/ED). The two systems were utilized to detect hydrogen peroxide in a variety of typical forensic samples including pre- and post-blast samples, as well as a series of environmental control samples. Peroxide-based organic explosives were also examined due to their propensity to produce peroxide residues following detonation. Because samples collected from post-blast scenes are frequently shipped or stored prior to analysis, the effects of storage time, temperature and type of substrate material on the recovery of hydrogen peroxide residues were also investigated. The combined results of the study demonstrate the capability of two HPLC approaches with selective detection in the analysis and investigation of suspected incidents involving peroxide based explosives.  相似文献   

3.
Conventional explosives 2,4,6-trinitrotoluene (TNT), nitroglycerin (NG), and ethylene glycol dinitrate (EGDN) sorbed to hair can be directly detected by an ion mobility spectrometer (IMS) in E-mode (for explosives). Terrorist explosive, triacetone triperoxide (TATP), difficult to detect by IMS in E-mode, was detected in N-mode (for narcotics). Three modes of sample introduction to IMS vapor desorption unit were used: (i) placement of hair directly into the unit, (ii) swabbing of hair and placement of swabs (i.e., paper GE-IMS sample traps) into the unit, and (iii) acetonitrile extracts of hair positioned on sample traps and placed into the unit. TNT, NG, and EGDN were detected in E-mode by all three sample introduction methods. TATP could only be detected by the acetonitrile extraction method after exposure of the hair to vapor for 16 days because of lower sensitivity. With standard solutions, TATP detection in E-mode required about 10 times as much sample as EGDN (3.9 mug compared with 0.3 mug). IMS in N-mode detected TATP from hair by all three modes of sample introduction.  相似文献   

4.
Research to counter the threat of organic peroxides such as triacetone triperoxide (TATP) is at times hampered by their inherent extreme sensitiveness and volatility. This work describes an approach to lowering some risks associated with the handling of TATP in the laboratory through the use of an analog species, tripentanone triperoxide (TPTP). Sensitiveness has been tested via standard methods. GCMS analysis has shown that TPTP degrades via similar mechanisms to TATP under a range of conditions. Slight differences in product composition were traced to side reactions which may also affect impurities present in homemade TATP synthesis. A pilot field trial was conducted to evaluate TPTP as a substitute for TATP in explosive detection dog (EDD) scent training. The degradation studies have yielded insights into the complexities of the acidic degradation of cyclic peroxides with potential forensic application, and TPTP's inadequacy as a TATP pseudoscent is a valuable example of the limitations of such training aids.  相似文献   

5.
This study extends previous work on the sorption of explosives to the hair matrix. Specifically, we have studied the interaction of 2,4,6-trinitrotoluene (TNT) and triacetone triperoxide (TATP) as a function of chemical pretreatment with acetonitrile, neutral and alkaline hydrogen peroxide, methanolic KOH and potassium permanganate, and the morphological changes that accompany these treatments. While differences in vapor pressure can account for quantitative differences between TNT and TATP sorption, both are markedly affected by the chemical rinses. Examination of the hair surface shows different degrees of smoothening following rinsing, suggesting that the attachment to hair is largely a surface phenomenon involving the 18-methyleicosanoic acid lipid layer. Density functional theory calculations were employed to explore possible nucleation sites of TATP microcrystals on the hair. We conclude that some of the sites on melanin granular surfaces may support nucleation of TATP microcrystals. Moreover, the calculations support the experimental finding that dark hair adsorbs explosives better than light hair.  相似文献   

6.
In this study, a standard method by gas chromatography coupled with mass spectrometry (GC/MS) for the analysis of classical organic explosives was developed. This method was validated in the EI mode, based on the XPT 90-210 standard method. Detection limits (LOD) and quantitation limits (LOQ) were both determined using electronic impact (EI) and negative ion chemical ionization (NICI) modes. These were compared and results showed that in the NICI mode, detection limits were lower than in the EI mode, thus NICI mode appeared to be the best way to analyze nitrate esters. Results of ion trap MS detection were then compared with those obtained in a previous study with single quadrupolar technology. Major ions that were obtained using ion trap MS detection in these two modes were reported.  相似文献   

7.
The Forensic Explosives Laboratory (FEL) operates within the Defence Science and Technology Laboratory (DSTL) which is part of the UK Government Ministry of Defence (MOD). The FEL provides support and advice to the Home Office and UK police forces on matters relating to the criminal misuse of explosives. During 1989 the FEL established a weekly quality assurance testing regime in its explosives trace analysis laboratory. The purpose of the regime is to prevent the accumulation of explosives traces within the laboratory at levels that could, if other precautions failed, result in the contamination of samples and controls. Designated areas within the laboratory are swabbed using cotton wool swabs moistened with ethanol:water mixture, in equal amounts. The swabs are then extracted, cleaned up and analysed using Gas Chromatography with Thermal Energy Analyser detectors or Liquid Chromatography with triple quadrupole Mass Spectrometry. This paper follows on from two previous published papers which described the regime and summarised results from approximately 14 years of tests. This paper presents results from the subsequent 7 years setting them within the context of previous results. It also discusses further improvements made to the systems and procedures and the inclusion of quality assurance sampling for the peroxide explosives TATP and HMTD. Monitoring samples taken from surfaces within the trace laboratories and trace vehicle examination bay have, with few exceptions, revealed only low levels of contamination, predominantly of RDX. Analysis of the control swabs, processed alongside the monitoring swabs, has demonstrated that in this environment the risk of forensic sample contamination, assuming all the relevant anti-contamination procedures have been followed, is so small that it is considered to be negligible. The monitoring regime has also been valuable in assessing the process of continuous improvement, allowing sources of contamination transfer into the trace areas to be identified and eliminated.  相似文献   

8.
A mixture of explosives was analyzed by gas chromatography (GC) linked to ultraviolet (UV) spectrophotometry that enabled detection in the range of 178–330 nm. The gas‐phase UV spectra of 2,4,6‐trinitrotoluene (TNT), 2,4‐dinitrotoluene (DNT), ethylene glycol dinitrate (EGDN), glycerine trinitrate (NG, nitroglycerine), triacetone triperoxide (TATP), and pentaerythritol tetranitrate (PETN) were successfully recorded. The most interesting aspect of the current application is that it enabled simultaneous detection of both the target analyte and its decomposition products. At suitable elevated temperatures of the transfer line between the GC instrument and the UV detector, a partial decomposition was accomplished. Detection was made in real time and resulted in overlaid spectra of the mother compound and its decomposition product. Hence, the presented approach added another level to the qualitative identification of the explosives in comparison with traditional methods that relies only on the detection of the target analyte. As expected, the decomposition product of EGDN, NG, and PETN was NO, while TATP degraded to acetone. DNT and TNT did not exhibit any decomposition at the temperatures used.  相似文献   

9.
Gas chromatographic analysis with electron capture detection is very sensitive to post-blast residues and useful for the determination of organic explosive molecules. But many compounds extracted from the matrices may interfere with the explosives. Using SPME, most interfering compounds are eliminated so the identification is easier. Another advantage of the technique is a low limit of detection. In this study, four different SPME fibers were tested to analyze the most common encountered organic explosives including nitro aromatics, nitramines and nitro-esters. Different parameters were tested (desorption time, agitation, ...) and a special device has been created to optimize the agitation. Direct desorption effect of the SPME fiber on the column compared to normal split-splitless injection is shown. In this way, the degradation of the most sensitive molecules is decreased. An application to a real case is also described in this paper.  相似文献   

10.
The application of isotopic techniques to investigations requiring the provision of evidence to a Court is limited. The objective of this research was to investigate the application of light stable isotopes and isotope ratio mass spectrometry (IRMS) to solve complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques.Due to the current threat of organic peroxide explosives, such as triacetone triperoxide (TATP), research was undertaken to determine the potential of IRMS to differentiate samples of TATP that had been manufactured utilising different starting materials and/or manufacturing processes. In addition, due to the prevalence of pentaerythritoltetranitrate (PETN) in detonators, detonating cord, and boosters, the potential of the IRMS technique to differentiate PETN samples from different sources was also investigated.Carbon isotope values were measured in fourteen TATP samples, with three definite groups appearing in the initial sample set based on the carbon data alone. Four additional TATP samples (in a second set of samples) were distinguishable utilising the carbon and hydrogen isotopic compositions individually, and also in combination with the oxygen isotope values. The 3D plot of the carbon, oxygen and hydrogen data demonstrated the clear discrimination of the four samples of TATP. The carbon and nitrogen isotope values measured from fifteen PETN samples, allowed samples from different sources to be readily discriminated.This paper demonstrates the successful application of IRMS to the analysis of explosives of forensic interest to assist in discriminating samples from different sources. This research represents a preliminary evaluation of the IRMS technique for the measurement of stable isotope values in TATP and PETN samples, and supports the dedication of resources for a full evaluation of this application in order to achieve Court reportable IRMS results.  相似文献   

11.
《Science & justice》2021,61(6):697-703
The identification and confirmation of trace explosive residues along with potential precursors and degradation products require a comprehensive laboratory analysis procedure. This study presents the determination of organic explosives consisting of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT), 2,4,6,N-tetranitro-N-methylaniline (Tetryl), 1,3,5-trinitrobenzene (1,3,5-TNB) and pentaerythritol tetranitrate (PETN) by a high-resolution liquid chromatography quadrupole time-of-flight mass spectrometry (LC−QTOF/MS). The qualitative information including retention time, collision energy, precursor ions, and characteristic fragmentation pattern of each explosive were collected using an atmospheric pressure chemical ionization (APCI) in negative ion mode. The separation efficiency among five compounds was greatly achieved in this study. Four real explosive samples consisting of TNT, RDX, PETN and Tetryl and 12 Ionscan® quality control swabs from the Royal Thai Army were also tested to validate and verify the viability of the GC–MS method used to validate results from an Ionscan® system. The results showed that LC−QTOF/MS is a powerful technique for the identification and confirmation of thermally unstable organic explosives on Ionscan® swabs compared to a conventional GC−MS technique.  相似文献   

12.
The method of sample recovery for trace detection and identification of explosives plays a critical role in several criminal investigations. After bombing, there can be difficulties in sending big objects to a laboratory for analysis. Traces can also be searched for on large surfaces, on hands of suspects or on surfaces where the explosive was placed during preparatory phases (e.g. places where an IED was assembled, vehicles used for transportation, etc.).In this work, triacetone triperoxide (TATP) was synthesized from commercial precursors following reported methods. Several portions of about 6 mg of TATP were then spread on different surfaces (e.g. floors, tables, etc.) or used in handling tests. Three different swabbing systems were used: a commercial swab, pre-wetted with propan-2-ol (isopropanol) and water (7:3), dry paper swabs, and cotton swabs wetted with propan-2-ol. Paper and commercial swabs were also used to sample a metal plate, where a small charge of about 4 g of TATP was detonated. Swabs were sealed in small glass jars with screw caps and Parafilm® M and sent to the laboratory for analysis. Swabs were extracted and analysed several weeks later by gas chromatography/mass spectrometry. All the three systems gave positive results, but wetted swabs collected higher amounts of TATP. The developed procedure showed its suitability for use in real cases, allowing TATP detection in several simulations, including a situation in which people wash their hands after handling the explosive.  相似文献   

13.
《Science & justice》2014,54(1):3-21
An LTQ-Orbitrap FTMS is a new (hybrid) mass spectrometric (MS) analyzer. It allows for the acquisition of full scan MSn (n-stage fragmentations, n = 1  n) spectra with the linear ion trap detector (LTQ) at high speed and/or with the Fourier Transform-detector (Orbitrap) with ultra high mass resolution (> 60,000 at m/z < 400 amu) and high mass accuracy (≤ 1 ppm with internal calibration). In addition it may be coupled with liquid chromatography (LC) with photo diode array (PDA) detection.Two methods for the forensic screening and confirmation of all common trace explosives in post-blast residues have been developed on this instrument using atmospheric pressure chemical ionization (APCI). In one run, the nitrogen-containing explosives are analyzed with the combination of “LC-(PDA)-APCI(−)-LTQ MS2/Orbitrap FTMS” (Method 1). In another run, peroxide explosives are analyzed with “LC-APCI(+)-LTQ MS2/Orbitrap FTMS” (Method 2).The performance of both methods has been validated according to procedures defined in the EU COMMISSION DECISION implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (DC 2002/657/EC) and other standards (NEN 17025 and NEN 7777). The methods are highly selective due to the simultaneous utilization of the Orbitrap FTMS and LTQ MS2, both of which are highly selective detectors Tested explosive compounds can be detected in the molecular ion form by the Orbitrap analyzer with minimal mass interference in different matrices when using an extremely narrow mass tolerance detection window (≤ 2 ppm). The identification of a detected compound follows an identification point system. Experimental results show that almost all explosive compounds meet the confirmation criteria (minimum 4 points) required for the positive identification by the DC 2002/657/EC.  相似文献   

14.
Improved method for the detection of TATP after explosion   总被引:3,自引:0,他引:3  
TATP in post explosion exhibits was reported earlier to be best recovered from vapor phase. A typical procedure includes its adsorption on Amberlite XAD-7, elution with acetonitrile and analysis by GC/MS. In this work, improved recovery of TATP from the vapor phase was achieved by SPME using PDMS/DVB fiber and immediate sampling to GC/MS. The recovery of TATP by SPME was compared with headspace and with adsorption on Amberlite XAD-7 by spiking onto filter paper put in a 100 mL beaker. The limit of detection of TATP was 6.4 ng in these conditions, few orders magnitude more than in the other tested methods. Recovery of TATP in the presence of various solvents was also studied. Acetone, water, and mixtures of water:alcohols (1:1) were found to reduce the recovery of TATP. Using SPME, TATP has been identified in dozens of post-explosion cases.  相似文献   

15.
The organic peroxide explosive triacetone triperoxide (TATP) is regularly encountered by law enforcement agents in various stages of its production. This study utilizes solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) to examine sulfuric acid-, hydrochloric acid-, and nitric acid-catalyzed TATP syntheses during the initial 24 h of these reactions at low temperatures (5-9°C). Additionally, aging of the reaction mixtures was examined at both low and ambient temperatures (19-21°C) for a further 9 days. For each experiment, TATP could be readily identified in the headspace above the reaction mixture 1 h subsequent to the combination of reagents; at 24 h, TATP and diacetone diperoxide (DADP) were prominent. TATP degraded more rapidly than DADP. Additionally, chlorinated acetones chloroacetone and 1,1,-dichloroacetone were identified in the headspace above the hydrochloric acid-catalyzed TATP reaction mixture. These were not present when the catalyst was sulfuric acid or nitric acid.  相似文献   

16.
Despite numerous instrumental achievements, canines are still considered the most effective field method for explosive detection. However, due to strict explosive regulations and safety requirements, it can be a challenge for agencies with "bomb dogs" to train using neat explosive materials. This establishes a need for non-explosive canine training aids with the same volatile component profiles as the explosives that they represent. In order to compare mimic materials to their explosive counterparts, a technique must be established that not only allows for identification of volatile compounds but also can monitor changes in the headspace profile over time with respect to time and temperature. The Automated Training Aid Simulation using SPME (or ATASS) was developed for that purpose. As described, ATASS was used to observe changes in the volatile profile of three explosives (Composition C-4, 2,4-dinitrotoluene (DNT), and triacetone triperoxide (TATP)) and respective prototype training materials (0.1% by mass C-4, 1% by mass 2,4-DNT, and 1% by mass TATP). Samples were prepared in vials and metal tins within a gallon (≈ 3785 mL) paint can to simulate common field techniques for canine training. Monitoring these materials in real time provides a better understanding of the major volatile components present and how the relative abundances of these components can change over time. The results presented indicate that ATASS successfully allows for a sufficient comparison between explosive and non-explosive training materials.  相似文献   

17.
Stability of raw TATP (3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane) samples in solutions of common solvents was studied to highlight problems faced by forensic labs in identification and analysis of organic peroxide samples. The TATP samples were prepared by reaction of acetone and hydrogen peroxide (30%) with the aid of following catalysts: hydrochloric, sulfuric, nitric, perchloric and methanesulfonic acid. Acetone, acetonitrile, methanol and acetonitrile/water solutions of TATP samples were prepared and stored at 50°C. Various degrees of stability were observed for particular combination of catalyst and solvent ranging from totally unstable (catalyst-H(2)SO(4)/any solvent) to very stable (catalyst-HCl/solvent acetonitrile). Purification of crude TATP by re-crystallization results in product stable in all investigated solvents. Stability of solution prepared from re-crystallized DADP (3,3,6,6-tetramethyl-1,2,4,5-tetroxane) was found to be on the same level as the stability of solution of re-crystallized TATP.  相似文献   

18.
A new method for the positive identification of elemental sulfur in explosives and explosive residues is developed. Following a carbon disulfide wash of explosives or explosive residues, a sample of the extracted material is injected onto a gas chromatography (GC) column, then analyzed via mass-selective (MS) detection. A positive identification of elemental sulfur is based on both retention time and fragmentation pattern. The GC-MS method is demonstrated to be useful in detecting and positively identifying elemental sulfur from both burned and unburned explosive mixtures. With a detection limit of 2.5 ng (2.5 x 10(-9) grams) of elemental sulfur on the column, it is shown to be 400 times more sensitive than the presumptive chemical color test that is currently the method employed for detection of small amounts of sulfur.  相似文献   

19.
Hair samples of patients of psychiatry and hair samples of suicide cases were analysed by liquid-chromatography/ionspray-mass spectrometry (LC/MS) for antidepressants and neuroleptics. Electrospray ionisation (ESI) with in-source collision induced dissociation (ESI/CID) and tandem-mass spectrometry (MS/MS) were used for drug and metabolite identification. Mass spectra library searching was performed using an ESI/CID mass spectra library and a MS/MS spectra library. Furthermore, extracted ion chromatograms were used for the detection of N-desmethyl-metabolites, which were also identified by their fragment-ion spectra. Three examples using these methods are shown: The tricyclic antidepressant maprotiline, the selective serotonin receptor inhibitor (SSRI) citalopram and their desmethylmetabolites as well as the neuroleptic pipamperone were detected and identified in hair extracts. For extraction powdered hair was treated by ultrasonication in methanol and solid-phase extraction was used for sample clean-up prior to LC/MS or MS/MS analysis. These examples demonstrate the power of LC/MS and LC/MS/MS for the detection and identification of drugs in hair extracts using full-scan mode and ESI/CID with library searching or using highly selective LC/MS/MS-analysis with library searching or in multiple reaction monitoring mode.  相似文献   

20.
Method detection limits are determined and compared for analysis of liquid injections of organic explosives and related compounds by gas chromatography-mass spectroscopy utilizing electron impact (EI), negative ion chemical ionization (NICI), and positive ion chemical ionization (PICI) detection methods. Detection limits were rigorously determined for a series of dinitrotoluenes, trinitrotoluene, two nitroester explosives, and one nitramine explosive. The detection limits are lower by NICI than by EI or PICI for all explosives examined, with the exception of RDX. The lowest detection limit for RDX was achieved in the PICI ionization mode. Judicious choice of the appropriate ionization mode can enhance selectivity and significantly lower detection limits. Major ions are reported for each analyte in EI, PICI, and NICI detection modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号