首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The requirement to differentiate between incorporation and external contamination of drugs into hair is undisputed, in particular when dealing with compounds which are administered by sniffing or inhalation (e.g. cocaine). With the aim of making this discrimination, hair samples from cocaine (COC) users (group IN) and seized cocaine samples (group OUT) were compared regarding the parameters benzoylecgonine (BZE), ecgonine methyl ester (EME), ecgonine (ECG), anhydroecgonine methyl ester (AEME), cocaethylene (CE) and norcocaine (NCOC). Since most of these compounds may be minor by-products of COC or be formed by biotransformation or chemical degradation, the stability of each substance was carefully examined. COC was found to be converted into significant amounts of BZE, EME and ECG even under mild extraction conditions, while traces of NCOC proved to be a ubiquitous by-product of COC. Cocaine positive hairs and seized cocaine samples (diluted to relevant concentrations) were equally preprocessed and analyzed by LC-MS-MS. Out of the metabolites listed above, NCOC, CE and AEME (each normalised to COC) were significantly increased in the incorporation group (i.e. hair samples from cocaine users). Based on this approach, a statistical discriminant analysis enabled us to make a prediction (and estimation of uncertainty) for each cocaine positive hair sample as to its likelihood of belonging to the group of cocaine users or of being contaminated.  相似文献   

2.
This work studies the distribution of cocaine and heroin metabolites in hair and urine of living polidrug abusers. Cocaine, benzoylecgonine (BEG), ecgonine methyl ester (EME), morphine, codeine and 6-monoacetylmorphine (6-MAM) were simultaneously extracted and analyzed by GC/MS in SIM mode. The results obtained show a different distribution of heroin and cocaine metabolites in urine and hair. In urine, we generally find BEG and EME for cocaine abuse, and morphine for heroin abuse. In hair, we detect cocaine and MAM as major metabolites for cocaine and heroin abuse, respectively.  相似文献   

3.
A sensitive and reliable method for extraction and quantification of benzoylecgonine (BZE) and cocaine (COC) in urine is presented. Propyl‐chloroformate was used as derivatizing agent, and it was directly added to the urine sample: the propyl derivative and COC were then recovered by liquid–liquid extraction procedure. Gas chromatography–mass spectrometry was used to detect the analytes in selected ion monitoring mode. The method proved to be precise for BZE and COC both in term of intraday and interday analysis, with a coefficient of variation (CV) <6%. Limits of detection (LOD) were 2.7 ng/mL for BZE and 1.4 ng/mL for COC. The calibration curve showed a linear relationship for BZE and COC (r2 >0.999 and >0.997, respectively) within the range investigated. The method, applied to thirty authentic samples, showed to be very simple, fast, and reliable, so it can be easily applied in routine analysis for the quantification of BZE and COC in urine samples.  相似文献   

4.
The coingestion of cocaine (COC) and ethanol is a very frequent occurrence and is known to increase the risk of morbidity and mortality. The formation occurs of a transesterification product, the cocaethylene (CE), which is even more toxic than cocaine. In order to study the role of ethanol as an agent of interaction in lethal cocaine intoxication, and to establish its influence in post mortem cocaine concentrations, an ion-trap gas chromatographic-mass spectrometric method (GC-MS) was validated to quantify simultaneously the agent and its biotransformation products, benzoylecgonine (BE), ecgoninemethylester (EME) and the 'biomarker' of the interaction, the CE present in whole blood. Deuterated internal standards were added to 2 ml of post mortem whole blood and extracted in Bond Elut Certify columns. The residues were evaporated and derivatized with N-methyl-N-t-butyldimethylsilyltrifluoroacetamide (MTBSTFA). Detection was performed by electron impact ionization. The monitored ions were m/z 82/85 for EME-tert-butyldimethylsilyl (TBDMS)/EME-d3-TBDMS; m/z 182/185 for COC/COC-d3; m/z 196/199 for CE/CE-d3 and m/z 282/285 for BE-TBDMS/BE-d3-TBDMS. The limits of detection and quantification were found to be 25 ng and 50 ng ml(-1), respectively, for COC and CE, and 50 and 100 ng ml(-1) for BE and EME. Accuracy was different for each of the compounds, varying from 65 to 98%. The dynamic range of the assay was 50-2000 ng ml(-1).  相似文献   

5.
The objective of the present work was to compare previously published methods and provide validation data to detect simultaneously cocaine (COC), benzoylecgonine (BE) and norcocaine (NCOC) in nail. Finger and toenail samples (5mg) were cut in very small pieces and submitted to an initial procedure for external decontamination. Methanol (3 ml) was used to release analytes from the matrix. A cleanup step was performed simultaneously by solid-phase extraction (SPE) and the residue was derivatized with pentafluoropropionic anhydride/pentafluoropropanol (PFPA/PFP). Gas chromatography-mass spectrometry (GC-MS) was used to detect the analytes in selected ion monitoring mode (SIM). Confidence parameters of validation of the method were: recovery, intra- and inter-assay precision, as well as limit of detection (LOD) of the analytes. The limits of detection were: 3.5 ng/mg for NCOC and 3.0 ng/mg for COC and BE. Good intra-assay precision was observed for all detected substances (coefficient of variation (CV)<11%). The inter-assay precision for norcocaine and benzoylecgonine were <4%. For intra- and inter-assay precision deuterated internal standards were used. Toenail and fingernail samples from eight declared cocaine users were submitted to the validated method.  相似文献   

6.
LC-MS/MS测定尿液中可卡因及其代谢物苯甲酰爱康宁   总被引:4,自引:0,他引:4  
Sun QR  Xiang P  Yan H  Shen M 《法医学杂志》2008,24(4):268-272
目的建立尿液中可卡因(cocaine,COC)及其代谢物苯甲酰爱康宁(benzoylecgonine,BZE)的液相色谱-串联质谱分析方法。方法尿液经固相萃取后,用AllurePFP丙基柱分离,以V(甲醇):V(20mmol/L乙酸胺和0.1%甲酸的缓冲溶液)=80∶20为流动相,采用二级质谱多反应监测模式检测COC和BZE。按10mg/kg的剂量对豚鼠腹腔注射可卡因,给药后收集7d尿液。结果尿液中COC和BZE在2.0~100ng/mL质量浓度范围内线性关系良好(r=0.9995),最低检测限(LOD)为0.5ng/mL;回收率大于90%;日内和日间精密度均小于6%;豚鼠尿液中主要检测目标物是BZE,且BZE检测时限也较COC长。结论所建方法灵敏度高,选择性好,适用于尿液中可卡因和苯甲酰爱康宁的检测。  相似文献   

7.
Two direct ethanol metabolites, namely ethyl glucuronide (EtG) and cocaethylene (CE), in the hair of cocaine (COC) users were compared in this study. Hair samples (n=68) were submitted to the determination of EtG (by liquid chromatography-electrospray-tandem mass spectrometry) and of COC and metabolites, including CE (by gas chromatography-mass spectrometry). Quantitative and qualitative results were compared. No quantitative correlation was found between EtG and CE, as well as between EtG and the cocaethylene concentration divided by the concentration of COC and its metabolites (benzoylecgonine and ecgonine methylester, as COC equivalents). Nevertheless, many factors are supposed to affect the amount of the two substances incorporated in the hair matrix, such as the subject's habits in ethanol and COC use, genetic variability in the metabolism of both substances, and the different chemical and physical properties of EtG and CE. When establishing a cut-off of 4 pg/mg for EtG and of 200 pg/mg for CE, 47 samples tested positive for EtG and 41 samples tested positive for CE; 12 samples out of the 47 EtG-positives tested negative for CE (25%), whereas 6 samples out of the 41 CE-positives tested negative for EtG (15%). According to these data, EtG appears to be a more sensitive and specific marker of non-moderate alcohol users than CE.  相似文献   

8.
A study was undertaken to assess the stability and the radioimmunoassay (RIA) detection of cocaine, benzoylecgonine (BZE), and 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) in whole blood while stored in 4 different kinds of blood collection tubes for up to 30 days at refrigeration and room temperatures. At various intervals, the tubes were sampled and analyzed using Abuscreen RIA. Also, semi-quantitative data derived from RIA analysis of forensic blood specimens were compared with quantitative data acquired using gas chromatography (GC) or GC/mass spectrometry (GC/MS) on the same specimens. RIA and chromatographic studies revealed that BZE and THC-COOH were stable in blood under all conditions studied. Cocaine, however, was found not to be stable in blood, especially when stored at room temperatures. Despite cocaine's instability in blood, RIA was able to detect the presence of cocaine and its breakdown products in blood under all conditions studied.  相似文献   

9.
Toxicological evaluation of postmortem urine collected from a 41-year-old deceased white male detected anhydroecgonine ethyl ester (ethylecgonidine, AEEE), a transesterification product of smoked cocaine co-abused with ethanol. A solid phase extraction (SPE) method was used to extract cocaine, AEEE, and related metabolites from urine. SPE on a 1 mL urine sample from the decedent followed by GC-MS detected AEEE. Other metabolites identified by GC-MS included cocaine, cocaethylene, and anhydroecgonine methyl ester (AEME). To determine whether some or all of the AEEE was artifactually produced in the heated GC injector port, an alternative LC-MS method was developed. LC/MS following SPE found at least 50 ng/mL of AEEE in the extract. The mass fragmentation (MS/MS and MS3) of AEEE detected in the urine was compared to spectra of authentic, synthesized compound. AEEE is a potential additional forensic marker for the co-abuse of smoked cocaine and ethanol.  相似文献   

10.
Cocaine is known to degrade in vivo and in vitro by several hydrolytic mechanisms. A previous study found that the initial amount of cocaine added to plasma could be accounted for by summing the molar concentrations of cocaine's hydrolysis products and the cocaine remaining after hydrolysis. The present study was undertaken to investigate whether or not relationships might exist between such molar concentration sums for different postmortem bodily fluids. Determinations of cocaine, benzoylecgonine, ecgonine methyl ester, and ecgonine were performed using liquid chromatography/mass spectrometry (LC/MS/MS) with heart blood, femoral blood, vitreous humor (VH), and urine (UR). The results demonstrate a strong correlation between blood and VH concentrations (correlation coefficients of 0.88-0.94), weak correlation between the UR and blood concentrations (correlation coefficients of 0.61-0.64), and weak correlation between UR and VH concentrations (correlation coefficient of 0.59). The results demonstrate that ecgonine is a significant hydrolysate with concentrations on the same order of magnitude as benzoylecgonine. The results are consistent with rapid distribution of the parent drug and its hydrolysates in the blood and VH. The strong correlation between the blood and VH demonstrates that VH is an important medium for toxicology testing when attempting to make a determination of cocaine intoxication.  相似文献   

11.
Cocaine and its major metabolite benzoylecgonine (BZE) were determined in blood samples from people arrested in Sweden for driving under the influence of drugs (DUID) over a 5-year period (2000-2004). Venous blood or urine if available, was subjected to a broad toxicological screening analysis for cannabis, cocaine metabolite, amphetamines, opiates and the major benzodiazepines. Verification and quantitative analysis of cocaine and BZE in blood was done by gas chromatography-mass spectrometry (GC-MS) at limits of quantitation (LOQ) of 0.02mg/L for both substances. Over the study period 26,567 blood samples were analyzed and cocaine and/or BZE were verified in 795 cases (3%). The motorists using cocaine were predominantly men (>96%) with an average age of 28.3+/-7.1 years (+/-standard deviation, S.D.). The concentration of cocaine was below LOQ in 574 cases although BZE was determined at mean, median and highest concentrations of 0.19mg/L, 0.12mg/L and 1.3mg/L, respectively. In 221 cases, cocaine and BZE were together in the blood samples at mean and (median) concentrations of 0.076mg/L (0.05mg/L) and 0.859mg/L (0.70mg/L), respectively. The concentrations of BZE were always higher than the parent drug; mean BZE/cocaine ratio 14.2 (median 10.9) range 1-55. Cocaine and BZE were the only psychoactive substances reported in N=61 cases at mean (median) and highest concentrations of 0.095 (0.07) and 0.5mg/L for cocaine and 1.01 (0.70) and 3.1mg/L for BZE. Typical signs of drug influence noted by the arresting police officers included bloodshot and glossy eyes, agitation, difficulty in sitting still and incoherent speech.  相似文献   

12.
This study (1) compares urine, skin swabs, and PharmChek sweat patches for monitoring drug use; (2) measures possible environmental contamination in recent cocaine (COC) users; and (3) evaluates various immunoassays (IA) for screening COC in diverse matrices. Unique aspects include daily urine monitoring of 10 participants for 4 weeks, multiple monitoring methods, analysis for all specimens by IA and gas chromatography (GC)/mass spectrometry (MS), and the potential for continued illicit drug use by participants. Urine served as the "gold standard" specimen for determining drug use. Only cocaine and related substances were detected.Trace amounts of drugs were found on the skin (<50 ng per swab) of urine-negative participants' hands or forehead. In contrast, larger quantities of COC were found on the skin of individuals with BE-positive urines or individuals living with drug users (up to 20 microg per swab). Patch COC amounts among the three regular users (250-9000, 0-240, 160-22,000 ng per patch) exceeded BE (50-950, none, 30-2200 ng per patch). Pre-swabs, valuable for interpreting the source or time frame of positive patch results, contained substantial COC (38-1160, 0-152, 34-762 ng per swab) prior to patch application; therefore, patch results may represent current use, prior use, contamination, or a combination. In three individuals with no indication of cocaine use, false positives (defined as sweat patch positive when urine specimens were <300ng BE/ml) occurred at a 7% rate. Proposed cut-off concentrations of 75 ng cocaine per patch and 300 ng BE/ml urine curtail the incidence of false positives in this limited population. Three immunoassays were compared to screen specimens for cocaine: a modified, manual Microgenics CEDIA; a Cozart ELISA; and an OraSure ELISA. CEDIA's limit of detection (LOD) was 81ng/ml, compared with LODs of 4 ng/ml for the Cozart ELISA and 1.5 ng/ml for the OraSure ELISA. Cozart correlated with OraSure results for COC concentrations <2000 ng per swab (n=117), r(2)=0.79.  相似文献   

13.
All the commonly used non-steriodal anti-inflammatory drugs (NSAIDs), except mefenamic acid, when extracted from the pharmaceutical dosage forms or the urines of users, and derivatized by silylation and then analysed by GC/MS, gave the mono- or the di-trimethylsilyl derivatives (depending on the number of derivatized groups in the drug) as the sole products. Mefenamic acid gave a mixture of products. When extracted from pharmaceutical dosage froms or from the urines of users, and analysed by GC/MS without derivatization, some of the NSAIDs were separated and detected as the unchanged molecules as the sole products, while others were separated and detected in altered forms as sole products or mixtures, depending on: (a) the solvent in which the extract was dissolved for injection into GC/MS, (b) the chemical structure of the drug, and (c) specifically for diflunisal, the presence or absence of potential methylating and/or acetylating agents on the GC column and/or septum. The main thermally-induced reactions of the underivatized NSAIDs included (i) methyl ester formation at the COOH group when the extract was dissolved in methanol, (ii) decarboxylation (i.e., loss of CO2), (iii) dehydration (i.e., loss of H2O) when the chemical structure permitted, such as for diclofenac, and (iv) cleavage at a carbon-heterocyclic nitrogen bond when one is present in an NSAID. Heating the urine in approximately 2 M HCl at 100 degrees C for 30 min, has been found to be a satisfactory means for effecting hydrolysis of the NSAIDs glucuronide conjugates. No metabolites, resulting from aromatic-ring hydroxylation, have been detected in urine for any of the NSAIDs studied.  相似文献   

14.
GC法检测血液和尿液中甲基苯丙胺和咖啡因   总被引:1,自引:1,他引:0  
目的建立同时测定血、尿中甲基苯丙胺和咖啡因含量的方法。方法应用GC/NPD技术,以4-苯基丁胺为内标,直接碱化,用氯仿提取,三氟乙酸酐衍生化,8CB熔融石英毛细管柱(30m×0.25mm×0.25μm)分析。结果生物样品中甲基苯丙胺与咖啡因在0.012—7.5μg/mL浓度范围内线性关系良好,检测限(S/N=3)依次为1.2ng/mL,0.6ng/mL(血);1.6ng/mL,0.8ng/mL(尿)。苯丙胺在0.017—10.0μg/mL浓度范围内线性关系良好,检测限为1.6mg/mL(血),3.2ng/mL(尿)。所有样本回收率均大于85%。结论本方法准确、灵敏,适用于血、尿中甲基苯丙胺及其代谢物苯丙胺的三氟乙酸酐衍生化物和咖啡因的同时检测,为判定滥用毒品种类、追查毒品来源以及研究生物体内甲基苯丙胺和咖啡因的交互影响提供了检测手段。  相似文献   

15.
Capillary electrophoresis (CE) is a modern separation technique that has some distinct advantages for toxicological analysis, such as a high efficiency, fast analysis, flexibility, and complementary separation mechanisms to chromatographic methods. CE can be applied in various modes, which each have a different separation mechanism or selectivity. The most common mode is capillary zone electrophoresis (CZE), in which charged analytes migrate in a buffer under the influence of an electric field. In micellar electrokinetic chromatography (MEKC), micelles are added to the buffer which interact with the analytes. MEKC can also be used for the separation of neutral compounds. In non-aqueous CE (NACE), the aqueous buffer is replaced by a background of electrolytes in organic solvents. A sample that needs to be screened can easily be analyzed subsequently by these CE modes using the same instrumentation.The aim of the study was to develop procedures for the analysis of basic and acidic drugs in serum and urine using CZE, MEKC, and NACE. A test mixture that consisted of six basic and six acidic compounds was used to study the separation behavior of five CE methods. The results showed that three methods (based on CZE, MEKC, and NACE) were suitable for the analysis of basic compounds and three methods (based on CZE and MEKC) for the analysis of acidic compounds.For the extraction of analytes from serum and urine, a solid-phase extraction (SPE) and a liquid-liquid extraction (LLE) method were compared. Both SPE and LLE methods provided clean extracts after extraction of the basic compounds from serum and urine. The extracts of acidic compounds contained more matrix interferences, especially for urine. The SPE method had some advantages compared to LLE, as it lead to cleaner extracts and higher peaks, and as it elutes basic and acidic compounds in one fraction.The potentials and pitfalls of the various methods for screening purposes in analytical toxicology are discussed.  相似文献   

16.
Lin L  Liao LC  Yan YY 《法医学杂志》2003,19(2):126-128
海洛因在体内极易代谢,其主要的代谢产物为单乙酰吗啡、吗啡等。目前,检测海洛因代谢物的常用生物检材有尿液、血液、毛发等;常用分析方法有薄层色谱法、气相色谱法、高效液相色谱法、气相色谱-质谱联用法、液相色谱-质谱联用法、免疫分析法、毛细管电泳法等。本文参考近年来的文献对生物检材中海洛因代谢物的分析方法作一综述,为法医毒物分析等相关领域的研究提供参考。  相似文献   

17.
目的研究固相微萃取(SPME)用于尿中苯丙胺(AMP)、甲基苯丙胺(MET)、3,4-亚甲二氧基苯丙胺(MDA)和3,4-亚甲二氧基甲基苯丙胺(MDMA)的提取。方法样品调节至碱性和用盐饱和后用顶空SPME,内标为MET-d5。萃取纤维为100μm聚二甲基硅氧烷(PDMS)。用气质联用选择离子检测(GC/MS/SIM)。结果0.2μg/ml加标尿样,AMP、MET、MDA和MDMA的富集倍数分别为22,60,13和47。检出限(S/N=3)为0.4~9.5ng/ml。线性范围为0.05~1μg/ml。0.2、0.5和1.0μg/ml加标尿样,相对回收率77.9%~112.4%,变异系数2.7%~18.0%(n=5)。用该方法分析5个案件样品,和常规液液萃取结果接近。结论顶空SPME法用于尿中AMP、MET、MDA和MDMA等化合物的分析,无需有机溶剂,富集效率高,提取-富集-进样一体化,简单方便实用。  相似文献   

18.
Gas chromatography (GC) and immunoassay techniques applied to blood and urine specimens were compared for the screening of benzodiazepines in postmortem forensic toxicology. Five hundred and six such successive postmortem cases in which both urine and peripheral blood was sent for toxicological analysis by the medical examiners were selected. The urine specimens were tested by the Emit((R)) d.a.u. Benzodiazepine Assay, and in parallel, the blood and urine specimens were screened for benzodiazepine drugs and their metabolites by an established automated dual-column GC method. The lowest number of positives (153) was obtained when immunoassay was performed without enzyme hydrolysis. When urine samples were hydrolysed before immunoassay, the number of positives increased to 175. The highest number of positives (200) was obtained in urine by GC, and the screening of blood by GC yielded 185 quantitative results. Despite the urine GC screening produced the most positives, the quantitative screening of the blood by GC appears to be the most efficient approach in postmortem forensic toxicology, considering the fact that although urine findings confirm the presence of the drug, quantitative results in urine are irrelevant to acute toxicity.  相似文献   

19.
Testing for the presence of cocaine (COC) is common in postmortem and clinical laboratories. COC use may be detected by screening urine specimens for COC metabolite. In the forensic arena, screening positive results are confirmed by a more specific and sensitive technique, such as gas chromatography-mass spectrometry. This article reports the case of an individual who died of COC intoxication but whose immunoassay screen (EMIT) for COC metabolite was negative. Gas chromatography-mass spectrometry analysis of the urine detected benzoylecgonine (BE) at a concentration of 75 ng/mL and COC at 55 ng/mL. These concentrations explain the negative screening result since the cutoff concentration of the assay was 300 ng/mL for BE. The reported cross reactivity with COC was 25,000 ng/mL. However, heart blood concentrations of COC and BE were 18,330 and 8640 ng/mL, respectively. The results from this case provide evidence that an EMIT test alone may fail to detect COC use. Individuals utilizing results of drug screening by immunoassay must be aware of the limitations of this testing methodology.  相似文献   

20.
The long-term stability of drugs and metabolites of forensic interest in urine, and preventive measures against their decomposition have been investigated, with special attention to filtration sterilization. An aseptic urine collection kit, which was recently developed based on filtration sterilization, was utilized for the aseptic collection and storage of urine samples. For evaluating preservation measures, methamphetamine (MA), amphetamine (AP), nitrazepam (NZ), estazolam (EZ), 7-aminoflunitrazepam (7AF), cocaine (COC), and 6-acetylmorphine (6AM) were spiked into urine at 500 ng/mL each, and were monitored for 6 months at 25, 4, and -20 degrees C, after the addition of NaN(3) and/or filtration sterilization using the aseptic collection kit. In severely contaminated urine with bacteria, there were significant losses of 7AF and NZ, and slight decomposition of MA and AP at 25 degrees C. However, such degradation was successfully suppressed by the use of the kit, though the use of the kit and NaN(3) were preferred for 7AF. The kit was also effective in preventing the hydrolyses of COC and 6AM, while it was suggested that the common preservative NaN(3) can accelerate the hydrolysis of such ester-type drugs and metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号