首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents 21 cases related to cyanide intoxication by oral ingestion. Cyanide concentrations in biological specimens are especially different from the type of postmortem specimens, and very important in interpreting the cause of death in postmortem forensic toxicology. Besides the detection of cyanide in autopsy specimens, the autopsy findings were unremarkable. Biological samples (0.2mL or equal to less than 10μg of cyanide) were analyzed colorimetrically for cyanide. In a series of 21 cyanide fatalities, the concentration ranges (mean±SD) of cyanide in heart blood, peripheral blood and gastric contents were 0.1-248.6mg/L (38.1±56.6mg/L), 0.3-212.4mg/L (17.1±45.1mg/L) and 2.0-6398.0mg/kg (859.0±1486.2mg/kg), respectively. The ranges of the heart/peripheral blood concentration ratio and gastric contents/peripheral blood concentration ratio were 0.3-10.6 (mean 3.4) and 3.4-402.4 (mean 86.0), respectively. From the difference of cyanide concentration and the concentration ratio of cyanide in different types of postmortem specimens, the possibility of the postmortem redistribution of cyanide and death by oral ingestion of cyanide could be confirmed. We reported cyanide fatal cases along with a review of literature.  相似文献   

2.
Cyanide is a highly toxic agent that has been frequently used for suicide in South Korea. It is also used in various industrial fields, such as metal plating, in which many accidental cyanide intoxications have occurred. To overcome the disadvantages of conventional cyanide analysis methods, a simple and fast method for the analysis of cyanide in whole blood using ion chromatography (IC) with amperometric detection was developed in this study. Whole blood samples were deproteinized, diluted, and analyzed using an IC–amperometric detection system. The limits of detection and quantitation were 0.1 and 0.2 mg/L, respectively. The method showed good linearity in the range of 0.2 to 50 mg/L with R2 > 0.99. The intra- and inter-assay precision and accuracy values were <10%. The established method was successfully applied to analyze whole blood samples from three cyanide intoxication cases.  相似文献   

3.
We reviewed all 87 deaths from the Happy Land Social Club fire. All deaths were due to smoke inhalation. The carboxyhemoglobin (COHb) concentrations ranged from 37 to 93% with a mean of 76.5%. The vast majority (97%) of the decedents had a COHb concentration over 50%. Cyanide blood concentrations ranged from 0 to 5.5 mg/L with a mean of 2.2 mg/L. Nine decedents had no cyanide detected, and seven had cyanide concentrations of less than 1 mg/L. Fewer than one third of the decedents had thermal injuries, and most were partial thickness burns involving less than 20% body surface area. Ethanol was detected in 72% of decedents with a range of 0.01 to 0.29 g% and a mean blood concentration of 0.11 g%. Cocaine or cannabinoid use was identified in 9% of the decedents. All decedents were visually identified, and all had soot in the airway extending to the major bronchi. Carboxyhemoglobin concentrations corresponded well with deaths from smoke inhalation. Cyanide concentrations did not correspond with the extent of smoke inhalation, and the role of cyanide in contributing to these deaths is doubtful. Hydrogen chloride inhalation, as evidenced by comparison of the pH of tracheal mucosa to controls, was not a factor.  相似文献   

4.
Cyanide is a powerful chemical asphyxiant found in some forensic cases following voluntary (suicide) or involuntary ingestion (fire, accidental exposure). A quantification method for cyanide that is specifically suited to post-mortem forensic purposes was developed. Determination was performed by headspace gas chromatography coupled to mass spectrometry using a GS-GASPRO column on an HP-6890 gas chromatograph with an HP-5973N mass detector. The biological sample was treated with an internal standard, frozen, glacial acetic acid was added and the sample was then incubated at 60°C for 15min. The headspace was sampled with a disposable syringe, and analyzed to quantify hydrogen cyanide. Isotopically labeled cyanide ((13)C(15)N) was used as the internal standard to minimize matrix effect and sampling error. The method produced an extended linear dynamic range (0.07-50μg/mL), and a method detection limit of 0.02μg/mL. Identical calibration curves were obtained when blood, gastric contents and aqueous solutions were used as the calibration standard matrix. This method was also successful in quantitating cyanide in gastric contents, one of the most variable biological fluids. The method has been validated and is being used for current forensic cases such as fire victims and suicides.  相似文献   

5.
To clarify the circumstances of death, the degree of inebriation is of importance in many cases, but for several reasons the determination of the ethanol concentration in post-mortem samples can be challenging and the synopsis of ethanol and the direct consumption markers ethyl glucuronide (EtG) and ethyl sulphate (EtS) has proved to be useful. The use of a rather stable matrix like vitreous humor offers further advantages. The aim of this study was to determine the concentrations of ethanol and the biomarkers in the robust matrix of vitreous humor and to compare them with the respective levels in peripheral venous blood and urine. Samples of urine, blood from the femoral vein and vitreous humor were taken from 26 deceased with suspected ethanol consumption prior to death and analyzed for ethanol, EtS and EtG. In the urine samples creatinine was also determined. The personal data, the circumstances of death, the post-mortem interval and the information about ethanol consumption prior to death were recorded. EtG and EtS analysis in urine was performed by LC-ESI-MS/MS, creatinine concentration was determined using the Jaffé reaction and ethanol was detected by HS-GC-FID and by an ADH-based method. In general, the highest concentrations of the analytes were found in urine and showed statistical significance. The mean concentrations of EtG were 62.8mg/L (EtG100 206.5mg/L) in urine, 4.3mg/L in blood and 2.1mg/L in vitreous humor. EtS was found in the following mean concentrations: 54.6mg/L in urine (EtS100 123.1mg/L), 1.8mg/L in blood and 0.9mg/L in vitreous humor. Ethanol was detected in more vitreous humor samples (mean concentration 2.0g/kg) than in blood and urine (mean concentration 1.6g/kg and 2.1g/kg respectively). There was no correlation between the ethanol and the marker concentrations and no statistical conclusions could be drawn between the markers and matrices.  相似文献   

6.
The present study explores toxicologic significance of blood cyanide concentrations in fire victims. Headspace gas chromatography was used for cyanide detection. Analysis of blood samples from ten fire victims (postmortem interval = 8 h to 3 to 5 d) detected zero to 11.9 mg/L of cyanide and a large difference in cyanide concentrations among victims. Carboxyhemoglobin (COHb) saturation was in the range of 24.9 to 84.2%. To examine the effects of methemoglobinemia and postmortem interval on blood cyanide concentrations in fire victims, an experiment was carried out using rabbits as the animal model. The rabbits were sacrificed by intramuscular injection of 1 mL/kg 2% potassium cyanide 5 min after intravenous injection of 0.33 mL/kg of 3% sodium nitrite (Group A, n = 3) or physiological saline (Group B, n = 6). Average methemoglobin contents immediately before potassium cyanide administration were 6.9 and 0.8% in Groups A and B, respectively. Average cyanide concentrations in cardiac blood at the time of death were 47.4 and 3.56 mg/L, respectively. When blood-containing hearts of the rabbits (n = 3 for Group B) were left at 46 degrees C for the first 1 h, at 20 to 25 degrees C for the next 23 h and then at 4 degrees C for 48 h, approximately 85 and 46% of the original amounts of blood cyanide disappeared within 24 h in Groups A and B, respectively. After the 72-h storage period, 37 and 10%, respectively, of the original amounts of cyanide remained in the blood. When the other three hearts in Group B were left at 20 to 25 degrees C for the last 48 h without refrigeration, cyanide had disappeared almost completely by the end of the experiment. The present results and those published in the literature demonstrate that the toxic effects of cyanide on fire victims should not be evaluated based solely on the concentration in blood.  相似文献   

7.
《Science & justice》2022,62(2):193-202
Cyanide is a powerful and rapidly acting poison. In Japan, cyanide poisoning is rare, and regular cyanide testing can be costly and time consuming. In contrast, alcohol analysis is routinely performed in most forensic laboratories. In this study, we attempted to develop a method for the simultaneous quantification of cyanide and alcohols in blood using headspace gas chromatography (HS–GC). As nitrogen-phosphorus detection (NPD) is more sensitive to hydrogen cyanide than mass spectrometry (MS), a Deans switch was used to switch the detectors during a single run. The separation provided by three analytical columns, PoraBOND Q, CP-Sil 5 CB, and HP-INNOWax, was investigated, and PoraBOND Q was selected. The use of HS–GC–MS/NPD with a Deans switch enabled the simple and simultaneous quantification of cyanide, ethanol, and 1-propanol. Eighteen other volatile compounds were detected in the SIM/scan mode of the MS.  相似文献   

8.
Ma D  Zhuo XY  Bu J  Xiang P  Shen BH 《法医学杂志》2007,23(2):117-119
目的确定血液中乙醇最佳保存条件,探讨影响血液中乙醇含量稳定性的主要因素。方法对血液保存的温度(-20、4、20℃)、防腐剂(NaF、无防腐剂、Na2O2)、储存容器中空气所占比例(0%、25%、50%)和血醇质量浓度(0.2、0.8、2.0mg/mL)四个因素采用正交试验L9(34)方法分组,样本采用顶空气相色谱法进行测定,测定结果采用方差分析进行讨论。结果在20℃保存且不加入防腐剂的两组样本中血醇浓度变化明显,其余变化不明显。结论血液样本在4℃、储存容器中空气比例为50%和加防腐剂(NaF)的条件下保存,稳定性最佳;四个影响因素中温度为影响血液中乙醇含量稳定性的主要因素。  相似文献   

9.
The concentrations of zolpidem and zopiclone were determined in peripheral blood samples in two forensic materials collected over a 10-year period (2001-2010). The z-hypnotics were determined in venous blood from living subjects (impaired drivers) and in femoral blood from deceased persons (forensic autopsies), with the latter classified as intoxication or other causes of death. The z-hypnotics were determined in blood by capillary column gas chromatography (GC) with a nitrogen-phosphorous (N-P) detector after solvent extraction with n-butyl acetate. The analytical limit of quantitation (LOQ) was 0.02mg/L for zopiclone and 0.05mg/L for zolpidem and these have remained unchanged throughout the study. When death was attributed to drug intoxication (N=918), the median concentration of zopiclone in blood was 0.20mg/L compared with 0.06mg/L for other causes of death (N=1215) and 0.07mg/L in traffic offenders (N=691) (p<0.001). Likewise, a higher median concentration (0.30mg/L) was found in intoxication deaths involving zolpidem (N=357) compared with 0.13mg/L for other causes of death (N=397) or 0.19mg/L in impaired drivers (N=837) (p<0.001). Median concentration in blood of both z-hypnotics were appreciably higher in intoxication deaths when no other substances were identified; 0 70mg/L (N=12) for zopiclone and 1.35mg/L (N=12) for zolpidem. The median concentrations of z-hypnotics in blood decreased as the number of co-ingested substances increased for intoxication deaths but not other causes of death. The most prevalent co-ingested substances were ethanol in autopsy cases and diazepam in the motorists. This large compilation of forensic cases should prove useful when toxicologists are required to interpret concentrations of z-hypnotics in blood samples in relation to cause of death.  相似文献   

10.
11.
The study reports a case of suicide by ingestion of sodium nitroprusside which resulted in acute cyanide poisoning. Analyses carried out on body fluid yielded the quantitation of total (5.00 mg/L) and free (3.30 mg/L) cyanide in blood and of methemoglobin (blood = 10.5%). At the scene, some solid reddish-brown material was found in a glass, which on toxicological analysis was found to contain sodium nitroprusside; about 9 g of the same substance was identified in stomach contents. The detection and quantification of cyanide and methemoglobin in biological samples from the case indicated that the lethal effect was due to both metabolic products (cyanide and methemoglobin).  相似文献   

12.
Blood samples of two cases were analyzed preliminarily by a classical spectrophotometric method (VIS) and by an automated headspace gas chromatographic method with nitrogen-phosphorus detector (HS-GC/NPD). In the former, hydrogen cyanide (HCN) was quantitatively determined by measuring the absorbance of chromophores forming as a result of interaction with chloramine T. In the automated HS-GC/NPD method, blood was placed in a headspace vial, internal standard (acetonitrile) and acetic acid were then added. This resulted in cyanide being liberated as HCN. The spectrophotometric (VIS) and HS-GC/NPD methods were validated on postmortem blood samples fortified with potassium cyanide in the ranges 0.5-10 and 0.05-5 mug/mL, respectively. Detection limits were 0.2 mug/mL for VIS and 0.05 mug/mL for HS-GC/NPD. This work shows that results obtained by means of the two procedures were insignificantly different and that they compared favorably. They are suitable for rapid diagnosis of cyanide in postmortem cases.  相似文献   

13.
Assigning a level of significance to cyanide concentrations found in the blood of fire victims is often hampered by the fact that cyanide is inherently unstable in cadavers and in stored blood samples. A few researchers have proposed that sodium fluoride can be used to minimize the instability of cyanide in blood samples; however, controlled studies have not been performed to support validation of this hypothesis. To test the sodium fluoride hypothesis, both treated and control blood samples from 14 autopsied fire victims were tested over a 25-30 day period. A 2% concentration of sodium fluoride was added to the blood samples at the start of testing and the samples were refrigerated between testing intervals. Cyanide concentrations in the treated and control samples were measured between 9 and 11 days post treatment and between 25 and 30 days post treatment. A statistically significant difference was not present between blood cyanide concentrations in treated and control samples between 9 and 11 days. During this time period, although there were small statistically significant increases in both treated and untreated samples the fluctuations were minor. Since the treated and control samples did not exhibit instability between 9 and 11 days, it is not surprising that the sodium fluoride appeared to have no effect. However, a statistically significant difference between blood cyanide concentrations in treated and control samples was observed between 25 and 30 days. Those samples treated with sodium fluoride showed a reduction in blood cyanide variability with virtually no overall change, over a 25-30 day period when compared to control samples, while unconditioned samples showed a significant, average increase of 35%. Based on the findings of this study, it is recommended that 2% sodium fluoride be added to blood samples obtained from fire victims to reduce cyanide instability due to bacteriological activity.  相似文献   

14.
There is limited data on postmortem oxycodone concentrations, consisting of three published reports with a total of 11 cases, many of which were polypharmacy cases. This report presents the results of a review of autopsy and coroner's reports from 10 counties for the years 2000 and 2001 to locate cases with oxycodone or hydrocodone exposure as a leading cause of death. Eighty-eight cases were located. Twenty-four deaths were attributed to oxycodone alone. Mean and median postmortem oxycodone blood concentrations were 1.23 mg/L and 0.43 mg/L, respectively. The range was 0.12 to 8.0 mg/L, with 13 cases (54%) < or = 0.5 mg/L. Seventeen deaths were attributed to hydrocodone alone. Mean and median postmortem hydrocodone blood concentrations were 0.53 mg/L and 0.40 mg/L, respectively. The range was 0.12 to 1.6 mg/L, with 11 cases (65%) < or = 0.5 mg/L. There were seven cases where the cause of death was attributed to the effects of a combination of hydrocodone and oxycodone. Mean oxycodone and hydrocodone blood concentrations were 0.34 mg/L and 0.14 mg/L, respectively. Forty cases involved polysubstance overdoses with significant involvement of other drugs and ethanol. Mean oxycodone and hydrocodone blood concentrations were 0.18 mg/L and 0.29 mg/L, respectively. The list of other substances involved was extensive but included ethanol, amitriptyline, methadone, codeine, propoxyphene, and acetaminophen. The findings of this study report oxycodone values associated with a fatality at blood concentrations lower than previously reported. This may represent enhanced information because of the larger sample group. Hydrocodone values associated with a fatality were similar to previously published values.  相似文献   

15.
A 29-year old female with a history of depression was found dead in a hotel room. The death scene investigation found empty pill bottles and an empty liter bottle of wine. Metaxalone, a centrally acting muscle relaxant, along with citalopram, ethanol, and chlorpheniramine were identified in the postmortem samples and quantitated by gas chromatography-mass spectrometry. The concentration of metaxalone in femoral vein blood was 39 mg/L. The heart blood concentration was 54 mg/L. Femoral vein blood concentrations of citalopram and chlorpheniramine were 0.77 mg/L and 0.04 mg/L, respectively. Ethanol levels were 0.13 g/dL in vitreous and 0.08 g/dL in heart blood. Other tissue samples were also analyzed. The authors consider the metaxalone concentrations toxic and potentially fatal. The citalopram concentrations were lower than those reported in fatal cases for this drug alone. Death was ascribed to polydrug abuse/overdose with metaxalone a major contributor. This represents the first reported case to our knowledge in which a metaxalone overdose significantly contributed to death.  相似文献   

16.
A case is presented of a fatal drug interaction caused by ingestion of methocarbamol (Robaxin) and ethanol. Methocarbamol is a carbamate derivative used as a muscle relaxant with sedative effects. Therapeutic concentrations of methocarbamol are reported to be 24 to 41 micrograms/mL. Biological fluids were screened for ethanol using the Abbott TDx system and quantitated by gas-liquid chromatography (GLC). Determination of methocarbamol concentrations in biological tissue homogenates and fluids were obtained by colorimetric analysis of diazotized methocarbamol. Blood ethanol concentration was 135 mg/dL (0.135% w/v) and urine ethanol was 249 mg/dL (0.249% w/v). Methocarbamol concentrations were: blood, 257 micrograms/mL; bile, 927 micrograms/L; urine, 255 micrograms/L; gastric, 3.7 g; liver, 459 micrograms/g; and kidney, 83 micrograms/g. The combination of ethanol and carbamates is contraindicated since acute alcohol intoxication combined with carbamate usage can lead to combined central nervous system depression as a result of the interactive sedative-hypnotic properties of the compounds.  相似文献   

17.
The dead body of a 44-year-old woman, previously known for depression and alcoholism, has been discovered at her place of residence by her husband. A forensic autopsy has been carried out. The results indicated unspecific histological lesions (alveolar oedema, liver steatosis and interstitial nephritis) but did not reveal any apparent cause of death. Several boxes of medicines have been found near the body, justifying a toxicological analysis. This has been performed on peripheral blood and urine samples using liquid chromatography with diode array and mass spectrometric detections, in conjunction with gas chromatography coupled with mass spectrometry. Ethanol has been found (1.24 g/L in blood, 2.63 g/L in urine and 1.33 g/kg in gastric content), as well as therapeutic concentrations of meprobamate (14.1mg/L) and low concentrations of nordazepam (0.12 mg/L) in blood. On the other hand, particularly high levels of labetalol, a widely used beta-blocker, have been found both in blood (1.7 mg/L) and urine (20.2mg/L), which led us to measure labetalol levels in available viscera samples (liver, heart, kidney, and lung) and gastric content. Measured concentrations were 14.2 microg/g, 7.8 microg/g, 5.4 microg/g, 5.2 microg/g and 31.1 microg/g, respectively. We describe here the first report of a fatal intoxication attributed to labetalol that is linked to its acute toxicity, with tissue distribution of this beta-blocker.  相似文献   

18.
Buffered formalin solutions were added to spiked blood samples containing diazepam, phenytoin, carbon monoxide and cyanide to give formalin-whole blood solutions of 5 and 8%. Sections of liver positive for desipramine, phenobarbital and phenytoin were placed in separate 5 and 8% formalin-water solutions. The formalin-blood solutions were monitored daily for 30 days, while the fixed liver and formalin-water samples were analyzed once a week for 4 weeks. In the formalin-blood solutions losses were found for diazepam and phenytoin over the 30-day period of at least 41% and 33%, respectively. Cyanide detection was not possible immediately after the addition of formalin and the presence of carboxyhemoglobin was difficult to detect after 1 week. In the liver, losses of phenobarbital and desipramine were greater than 60% while phenytoin showed little change. This study has revealed that the drugs examined at toxic concentrations can be detected, with variable recoveries, for up to 30 days after fixation with formalin. However, quantitative analysis for cyanide and carboxyhemoglobin may be significantly impaired in the presence of formaldehyde.  相似文献   

19.
This pharmacokinetic study investigated the kinetics of ethanol and its metabolite ethyl glucuronide (EtG) in blood and urine during the whole time course of absorption and elimination. There are few previous studies on the kinetics of EtG in blood, and we wanted to evaluate whether such knowledge could yield valuable information regarding the time of ethanol ingestion in forensic cases, such as, for instance, drunk driving. Ten male volunteers consumed ethanol at a fixed dose of 0.5 g/kg body weight in a fasted state. Blood samples were collected for 14 h and urine samples were collected for 45-50 h after the start of drinking. EtG reached its maximum concentration (C(max)) in blood after a median of 4 h (range 3.5-5), a median of 3 h (range 2-4.5) after C(max) for ethanol. The ethanol-to-EtG ratios in blood (ethanol in g/L, EtG in mg/L) were >1 only for the first median 3.5 h (range 2.5-3.5) after drinking. EtG elimination occurred with a median half-life of 2.2 h (range 1.7-3.1 h), and the renal clearance was 8.32 L/h (median, range 5.25-20.86). The concentrations of EtG were always much higher in urine than in blood. The total amount of EtG excreted in the urine was median 30 mg (range 21.5-39.7), representing 0.017% (median, range 0.013-0.022) of the ethanol given, on a molar basis. The information from the present study may be a valuable supplement to determine the time of ethanol ingestion. For this purpose, two subsequent increasing EtG values and a high ethanol-to-EtG ratio in blood would support information of recent drinking.  相似文献   

20.
A method for the determination of blood alcohol concentration by headspace analysis using an electrochemical detector is described. A determination can be made within 2 min, and only 0.1 ml of blood is required for each analysis. The detector response was linearly related to ethanol concentrations up to 3.0 mg/ml. The standard deviation of a single determination was +/- 0.014 mg/ml. The accuracy of the method based on comparison with an enzymatic (alcohol dehydrogenase) technique was high, the mean recovery being 102.2% of the attributed concentration. The ease of the operation and fast analysis time make the method ideal for serial determinations, for example during mass screening of biological samples for ethyl alcohol in forensic and toxicology laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号