首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
气相色谱-串联质谱法分析尿和血中除草剂百草枯   总被引:1,自引:1,他引:0  
目的建立尿和血中百草枯的离子交换固相萃取-气相色谱-串联质谱分析方法。方法尿样加内标乙基百草枯,用732阳离子交换树脂提取;血样加内标乙基百草枯,用三氯乙酸凝聚蛋白质后取上清液用732阳离子交换树脂提取。提取物用硼氢化钠在水溶液中碱性条件下还原,还原物用有机溶剂提取进行气相色谱-串联质谱法分析。结果尿和血中百草枯的提取率分别为76%和74%,检测限分别为2ng/mL和10ng/mL,尿添加百草枯100ng/mL和血添加百草枯500ng/mL水平的回收率分别为99.6±5.6%和99.3±7.6%(Mean±CV)。结论本文建立的分析方法灵敏度高,能够满足中毒致死案件检验及临床毒物检验的需要。  相似文献   

2.
A rapid and sensitive liquid chromatography/electrospray ionization mass spectrometry (LC/MS) procedure has been developed for the analysis of biofluids containing flunitrazepam and its metabolites. Specimens were spiked with deuterated analogs of the analytes. Urine specimens were enzymatically hydrolyzed and blood specimens were untreated. Extractions were carried out using CleanScreen DAU SPE cartridges. The drugs were separated on a C18 column using a methanol-water-ammonium hydroxide (60:40: 0.03 v/v) mobile phase. After determination of base peaks using full scan mass spectrometry, the mass spectrometry method was optimized to operate in selected-ion monitoring (SIM) mode for the base peak of each analyte. Positive findings were confirmed by LC/MS/MS using the same mobile phase and column. This analytical procedure allows for the detection of low levels of flunitrazepam and metabolites in biofluids. It is useful for ascertaining the role of flunitrazepam in cases of drug-facilitated sexual assault.  相似文献   

3.
A method for the sensitive and selective determination of ethyl glucuronide (EtG) in hair has been developed using solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Washed and cut hair segments were extracted by ultrasonication (3h, 50 degrees C) and the extracts were cleaned-up with aminopropyl SPE columns. LC-MS/MS analysis was performed using a polar-endcapped phenyl-hexyl-RP-phase with negative mode electrospray ionisation (ESI) using a triple quadrupole mass spectrometer (Sciex API 365) with a turboionspray source and post-column addition of acetonitrile for enhanced sensitivity. The MS/MS transitions monitored were m/z 221 -->75 for EtG and 226 -->75 for D(5)-EtG as an internal standard. The method was selective and sensitive, with a detection limit of 51 pg/mg hair at a signal-to-noise ratio of 3:1. The mean recovery was 96%, with an intra- and inter-day precision of less than 11.7% at a concentration of 200 pg/mg. The linearity was assessed in the range of 25-2000 pg/mg hair, with a correlation coefficient of 0.997. The method was successfully applied to 97 human hair samples which were taken at autopsies from persons with known alcoholism or were obtained from alcoholics who were hospitalized for ethanol withdrawal, from social drinkers and from children having not consumed any alcohol. Although, approximately two-third of the alcoholics showed EtG concentrations in hair of higher than 51 pg/mg (up to >4000 pg/mg), in one-third the EtG concentration was below the detection limit. However, only in one of five hair samples of "social drinkers", the EtG concentration was above the detection limit (51 pg/mg). No EtG has been detected in the hair of children. These investigations demonstrate that heavy alcohol consumption may be but not necessarily has to be detectable by EtG analysis in hair.  相似文献   

4.
This preliminary study compares the benzodiazepine results for 10 post-mortem scalp hair samples using a classical solid-phase extraction (SPE) and a molecularly imprinted solid-phase extraction (MISPE) system. The hair samples selected for testing were from drug-related deaths where a positive benzodiazepine blood result was obtained. Samples were decontaminated with 0.1% sodium dodecyl sulfate, distilled water and dichloromethane, incubated overnight in methanol/25% aqueous ammonium hydroxide (20:1), extracted by SPE or MISPE and subsequently analysed by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Both extraction methods detected diazepam, nordiazepam, oxazepam, temazepam and nitrazepam in the samples. Diazepam was detected in a greater number of samples using MISPE due to both its lower limit of detection (LOD) and higher extraction recovery as a result of excellent molecular recognition of the template (diazepam) imparted by the imprinting process. The selective recognition of two diazepam analogues, nordiazepam and oxazepam, was demonstrated using MISPE since they were also detected in a greater number of samples. In contrast, another diazepam analogue, temazepam, was detected in a greater number of samples using SPE since the LOD using this extraction was lower than with MISPE. Nitrazepam was detected in one sample using both extraction methods. Overall the MISPE and SPE hair results were in good qualitative agreement. For the samples, where both extraction methods detected nordiazepam, temazepam and oxazepam, the concentrations were always higher for SPE. This is probably due to the MIP procedure producing extracts with fewer matrix interferences than the extracts produced using the classical SPE method. MISPE could be used as a complementary method to classical SPE for the analysis of benzodiazepine positive hair samples collected from chronic users.  相似文献   

5.
A simple and rapid method for isolation of five butyrophenones with Sep-Pak C18 cartridges from human samples, and their wide-bore capillary gas chromatography (GC), are presented. The GC was made by both flame ionization and electron capture detections. The drugs contained in alkaline samples were directly applied to the cartridges and eluted with chloroform/isopropanol (9:1). The recoveries with use of the cartridges were excellent for most drugs in both urine and plasma samples. We can recommend the Sep-Pak C18 cartridges for isolation of butyrophenones because of simplicity and rapidity, and also wide-bore capillary GC because of high sensitivity and low decomposition of drugs during passage through the column.  相似文献   

6.
LC-MS/MS测定尿液中可卡因及其代谢物苯甲酰爱康宁   总被引:4,自引:0,他引:4  
Sun QR  Xiang P  Yan H  Shen M 《法医学杂志》2008,24(4):268-272
目的建立尿液中可卡因(cocaine,COC)及其代谢物苯甲酰爱康宁(benzoylecgonine,BZE)的液相色谱-串联质谱分析方法。方法尿液经固相萃取后,用AllurePFP丙基柱分离,以V(甲醇):V(20mmol/L乙酸胺和0.1%甲酸的缓冲溶液)=80∶20为流动相,采用二级质谱多反应监测模式检测COC和BZE。按10mg/kg的剂量对豚鼠腹腔注射可卡因,给药后收集7d尿液。结果尿液中COC和BZE在2.0~100ng/mL质量浓度范围内线性关系良好(r=0.9995),最低检测限(LOD)为0.5ng/mL;回收率大于90%;日内和日间精密度均小于6%;豚鼠尿液中主要检测目标物是BZE,且BZE检测时限也较COC长。结论所建方法灵敏度高,选择性好,适用于尿液中可卡因和苯甲酰爱康宁的检测。  相似文献   

7.
A rapid method for isolation of various benzodiazepines from human samples with Sep-Pak C18 cartridges before wide-bore capillary gas chromatography is described. The drugs dissolved in alkaline samples were directly applied to the cartridges and eluted with hexane/isopropanol (9:1). The recoveries were excellent for all drugs in urine samples, but were somewhat lower for some drugs in plasma samples. The latter problem could be easily circumvented by using a deproteinization process before their application to the cartridge. We can recommend the Sep-Pak C18 cartridges for isolation of benzodiazepines because of their simplicity and rapidity.  相似文献   

8.
A solid-phase extraction (SPE) procedure has been developed for impurity profiling of illicit tablets containing 3,4-methylenedioxy-N-methyl-amphetamine (MDMA, ecstasy). Following initial comparison of liquid-liquid extraction and solid-phase extraction, SPE was found to be preferable because it afforded higher extraction efficiencies and shorter extraction times. Procedure blank samples were also analyzed to identify constituents of the extracts which did not originate in the ecstasy tablets. The developed procedure was subsequently applied to 12 samples of seized ecstasy tablets and a comparison was made of these samples to determine similarities and obtain inferences with respect to commonality of origin.  相似文献   

9.
Two groups were selected from the remainder of hair samples that had been tested for drugs at TrichoTech for medico-legal cases: samples that tested negative (drug-negative group; N=42, age 33.4+/-7.2 years) and samples that tested positive for drugs (drug-positive group; N=57, age 32.5+/-8.8 years). A rapid, simple method to detect the ethanol metabolite, ethyl glucuronide (EtG) in hair has been developed. The hair samples were sectioned, and then submitted to overnight sonication in water. Samples then underwent SPE using anion exchange cartridges, followed by derivatisation with N,O-bis[trimethylsilyl]trifluoroacetamide (BSTFA), before confirmation by GC-MS/MS. The assay produced excellent linearity and sensitivity over the calibration range 0.02-1.0 ng/mg, assuming a 10 mg hair sample. The mean age of the two groups was not statistically different (p=0.575, Student t-test), indicating a homogeneous group. Twelve of the 57 (21.0%) hair samples of the drug-positive group tested positive for EtG, and 17 of the 42 (40.5%) hair samples of the drug-negative group tested positive for EtG. The mean concentration of EtG in the drug-positive group was 0.011 ng/mg compared to 0.107 ng/mg in the drug-negative group. When the full results of this study were subjected to statistical analysis it was shown that EtG levels in the drug-negative group were statistically higher than those found in the drug-positive group (p<0.05). This preliminary finding may be of use in the study of addiction and adds valuable data to previous studies regarding the use of EtG as a valuable marker for alcohol levels in hair.  相似文献   

10.
A fast method using automated solid-phase extraction (SPE) and short-column liquid-chromatography coupled to tandem mass-spectrometry (LC/MS/MS) with negative atmospheric-pressure chemical ionisation (APCI) has been developed for the confirmation of 11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol (THC-COOH) in urine samples. This highly specific method which combines chromatographic separation and MS/MS-analysis can be used for the confirmation of positive immunoassay results with a NIDA cut-off of 15ng/ml. The conjugates of THC-COOH were hydrolysed prior to SPE, and a standard SPE was performed using C18-SPE columns. No derivatisation of the extracts was needed as in GC/MS analysis, and the LC run-time was 6.5min by gradient elution with a retention time of 2.4min. Linearity of calibration was obtained in the range between 0 and 500ng/ml (correlation coefficient R(2)=0.998). Using linear regression (0-50ng/ml) the limit of detection (LOD) was 2.0ng/ml and the limit of quantitation (LOQ) was 5.1ng/ml; day-to-day reproducibility and precision were tested at 15 and 250ng/ml and were 13.4ng/ml+/-3.3% and 255.8ng/ml+/-4.5%, respectively.  相似文献   

11.
Toxicological evaluation of postmortem urine collected from a 41-year-old deceased white male detected anhydroecgonine ethyl ester (ethylecgonidine, AEEE), a transesterification product of smoked cocaine co-abused with ethanol. A solid phase extraction (SPE) method was used to extract cocaine, AEEE, and related metabolites from urine. SPE on a 1 mL urine sample from the decedent followed by GC-MS detected AEEE. Other metabolites identified by GC-MS included cocaine, cocaethylene, and anhydroecgonine methyl ester (AEME). To determine whether some or all of the AEEE was artifactually produced in the heated GC injector port, an alternative LC-MS method was developed. LC/MS following SPE found at least 50 ng/mL of AEEE in the extract. The mass fragmentation (MS/MS and MS3) of AEEE detected in the urine was compared to spectra of authentic, synthesized compound. AEEE is a potential additional forensic marker for the co-abuse of smoked cocaine and ethanol.  相似文献   

12.
We present a validated method for the simultaneous analysis of basic drugs which comprises a sample clean-up step, using mixed-mode solid-phase extraction (SPE), followed by LC-MS/MS analysis. Deuterated analogues for all of the analytes of interest were used for quantitation. The applied HPLC gradient ensured the elution of all the drugs examined within 14 min and produced chromatographic peaks of acceptable symmetry. Selectivity of the method was achieved by a combination of retention time, and two precursor-product ion transitions for the non-deuterated analogues. Oral fluid was collected with the Intercept, a FDA approved sampling device that is used on a large scale in the US for workplace drug testing. However, this collection system contains some ingredients (stabilizers and preservatives) that can cause substantial interferences, e.g. ion suppression or enhancement during LC-MS/MS analysis, in the absence of suitable sample pre-treatment. The use of the SPE was demonstrated to be highly effective and led to significant decreases in the interferences. Extraction was found to be both reproducible and efficient with recoveries >76% for all of the analytes. Furthermore, the processed samples were demonstrated to be stable for 48 h, except for cocaine and benzoylecgonine, where a slight negative trend was observed, but did not compromise the quantitation. In all cases the method was linear over the range investigated (2-200 microg/L) with an excellent intra-assay and inter-assay precision (coefficients of variation <10% in most cases) for QC samples spiked at a concentration of 4, 12 and 100 microg/L. Limits of quantitation were estimated to be at 2 microg/L with limits of detection ranging from 0.2 to 0.5 microg/L, which meets the requirements of SAMHSA for oral fluid testing in the workplace. The method was subsequently applied to the analysis of Intercept samples collected at the roadside by the police, and to determine MDMA and MDA levels in oral fluid samples from a controlled study.  相似文献   

13.
A totally automated procedure has been developed for the detection and quantitation of morphine and codeine in urine case samples. The samples were initially screened for these drugs by a Syva EMIT Toxicology System (ETS). A Zymate laboratory robotic system confirms positive samples from Syva ETS by performing the hydrolysis, extraction, and derivatization of morphine and codeine. The derivatized morphine and codeine were detected using gas chromatography/mass spectrometry (GC/MS). Enzymatic hydrolysis conditions were experimentally optimized during method development. The automation of these procedures has proven to be reliable and efficient.  相似文献   

14.
A simple and rapid method for the isolation of seven synthetic pyrethroid insecticides (methothrin, fenpropathrin, cyhalothrin, permethrin, cypermethrin, fenvalerate, deltamethrin) with a solid phase extraction (SPE), utilizing Sep-Pak C18 cartridges, from human urine and plasma is presented. The detection of the insecticides was performed using a wide bore capillary gas chromatograph (GC) with flame ionization detection (FID). The insecticide-containing samples mixed with 70% methanol were directly applied to the cartridges and eluted with 2 ml chloroform. The recoveries using the cartridges were between 90-102% for urine and 81-93% for plasma. Mixing samples with 70% methanol prior to extraction, seems very useful for the screening of synthetic pyrethroid insecticides.  相似文献   

15.
目的建立203种毒品的液相色谱-串联质谱筛查鉴定方法。方法选用Accucore TM Phenyl/Hexyl苯基己基柱(100 mm×2.1 mm,2.6μm)为色谱柱,柱温50℃,以甲醇乙腈混合溶剂(体积比1:1,含0.1%甲酸和2 mmol/L甲酸铵)、水(含0.1%甲酸和2 mmol/L甲酸铵)作为流动相进行梯度洗脱,流速0.4 mL/min。质谱采用电喷雾正离子模式(ESI+)进行离子化,使用多反应监测(MRM)模式采集数据,总分析时间14 min。结果该方法实现了203种毒品的筛查鉴定分析,各目标物的方法检出限均为10 ng/mL。结论建立的筛查鉴定方法具有快速、准确、灵敏等优点,能够满足禁毒工作的日常需要。  相似文献   

16.
A qualitative and quantitative analytical method was developed and validated for the determination of 49 licit and illicit drugs in oral fluid. Small oral fluid samples, volume 1mL, were collected from volunteers using a modified Omni-Sal device and the analytes were extracted from an oral fluid/buffer mixture using a single Bond Elut Certify solid phase extraction cartridge. Liquid chromatography-tandem mass spectrometry (LC-MS-MS) and gas chromatography-repetitive full scan mass spectrometry (GC-MS) were used in parallel to analyze the extracts for the targeted drugs. Extracts were analyzed by GC-MS in their underivatized form and as their pentafluoropropionyl derivatives. Deuterated internal standards were used for quantification of drugs of abuse by LC-MS-MS to minimize matrix effects. Methadone-d(9) and tumoxetine were used as the internal standards for quantification of non-derivatized and derivatized analytes respectively by GC-MS. Linearity was demonstrated over the range 5-200 ng/mL and limits of detection were less than 4 ng/mL for each drug analyzed. The method demonstrated acceptable recoveries for most of the analytes and good intra- and inter-day precision. Acquisition of data by repetitive full scan GC-MS allows the addition of further analytes to the target menu.  相似文献   

17.
尿中氯胺酮及其代谢物盘鉴和GC/MS/SIM测定   总被引:10,自引:0,他引:10  
目的 研究尿中氯胺酮(KET)及其代谢物去甲基氯胺酮(NKET)的盘鉴(Disk SPE)。方法 用含有化学键合C18和强酸型强阳离子交换(SCX)基团的萃取柱SPEC.C18 AR/MP3萃取,加入萃取柱前的尿样用0.1mol/L磷酸盐缓冲溶液(pH 6)稀释,洗脱溶剂为含2%(v/v)氨水的乙酸乙酯;以2,4,6-三硝基甲苯(TNT)为色谱内标,GC/MS/SIM检测。结果 在加标量为0.5μg/mL、2μg/mL和6μg/mL的控制尿样中,KET和NKET的平均回收率分别为91.5%和79.9%,6次测定的RSD均为8.7%;线性范围0.02-8μg/mL,线性相关系数分别为0.9819和0.9964;检出限(S/N=3)分别为6ng/mL和4ng/mL;总离子色谱图背景低,杂质少。同一根萃取柱重复使用8次以上未见性能下降;嫌疑尿样中检出KET和/或NKET,和常规的液液萃取结果相符。结论 该方法适用于尿中KET和NKET的同时测定。  相似文献   

18.
Ketamine (KT) is widely abused for hallucination and also misused as a "date-rape" drug in recent years. An analytical method using positive ion chemical ionization-gas chromatography-mass spectrometry (PCI-GC-MS) with an automatic solid-phase extraction (SPE) apparatus was studied for the determination of KT and its major metabolite, norketamine (NK), in urine. Six ketamine suspected urine samples were provided by the police. For the research of KT metabolism, KT was administered to SD rats by i.p. at a single dose of 5, 10 and 20mg/kg, respectively, and urine samples were collected 24, 48 and 72 h after administration. For the detection of KT and NK, urine samples were extracted on an automatic SPE apparatus (RapidTrace, Zymark) with mixed mode type cartridge, Drug-Clean (200 mg, Alltech). The identification of KT and NK was by PCI-GC-MS. m/z238 (M+1), 220 for KT, m/z 224 (M+1), 207 for NK and m/z307 (M+1) for Cocaine-D(3) as internal standard were extracted from the full-scan mass spectrum and the underlined ions were used for quantitation. Extracted calibration curves were linear from 50 to 1000 ng/mL for KT and NK with correlation coefficients exceeding 0.99. The limit of detection (LOD) was 25 ng/mL for KT and NK. The limit of quantitation (LOQ) was 50 ng/mL for KT and NK. The recoveries of KT and NK at three different concentrations (86, 430 and 860 ng/mL) were 53.1 to 79.7% and 45.7 to 83.0%, respectively. The intra- and inter-day run precisions (CV) for KT and NK were less than 15.0%, and the accuracies (bias) for KT and NK were also less than 15% at the three different concentration levels (86, 430 and 860 ng/mL). The analytical method was also applied to real six KT suspected urine specimens and KT administered rat urines, and the concentrations of KT and NK were determined. Dehydronorketamine (DHNK) was also confirmed in these urine samples, however the concentration of DHNK was not calculated. SPE is simple, and needs less organic solvent than liquid-liquid extraction (LLE), and PCI-GC-MS can offer both qualitative and quantitative information for urinalysis of KT in forensic analysis.  相似文献   

19.
A GC/MS-method is described for the screening, detection and determination of the commonly used drugs amphetamine, methamphetamine, MDA, MDMA and MBDB in small blood samples and bloodstains using solid phase SPE columns and a pipetting robot (Gilson Aspec XL). The detection limits are in the order of 0.03 to 0.08 microgram/L and the correlation factors between 0.9982 and 0.9998. Furthermore the stability was investigated covering a storage time of 64 days. The method has proven useful in forensic cases with only small sample volumes or bloodstains.  相似文献   

20.
Phenylalkylamine derivatives, such as methamphetamine (MA), amphetamine (AM), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), phentermine (PT), fenfluramine (FFA) and phenmetrazine (PM), and ketamine (KT) are widely abused recreational or anorectic drugs in Korea and are regulated under the Controlled Substance Act in Korea. Phenylalkylamines and ketamine analysis is normally performed using both urine and hair samples but there is no established method for the simultaneous analysis of all these phenylalkylamines and ketamine in oral fluids. Oral fluid is easy to collect/handle and can provide an indication of recent drug abuse. In this study, to confirm the presence of phenylalkylamine derivatives and ketamine in oral fluid after screening with an immunoassay, an analytical method using automated solid phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS) was developed and fully validated according to international guidelines. The applicability of the assay was demonstrated by analyzing of authentic oral fluid samples and the results of oral fluid analysis were compared with those in urine and hair to to evaluate the feasibility of oral fluid in forensic cases. The recovery of phenylalkylamines and ketamine from oral fluid collection devices was also assessed. Oral fluid specimens from 23 drug abuse suspects submitted by the police were collected using Salivette (Sarstedt, Nümbrecht, Germany), Quantisal (Immunalysis, Pomona, CA) or direct expectoration. The samples were screened using a biochip array analyzer (Evidence Investigator, Randox, Antrim, UK). For confirmation, the samples were analyzed by GC-MS in selected-ion monitoring (SIM) mode after extraction using automated SPE (RapidTrace, Zymark, MA, USA) with a mixed-mode cation exchange cartridge (CLEAN SCREEN, 130 mg/3 ml, UCT, PA, USA) and derivatization with trifluoroacetic anhydride (TFA). The results from the immunoassay were consistent with those from GC-MS. Twenty oral fluid samples gave positive results for MA, AM, PT and/or PM among the 23 cases, which gave positive results in urine and/or hair. Although large variations in the MA, AM, PT and PM concentrations were observed in three different specimens, the oral fluid specimen was useful for demonstrating phenylalkylamines and ketamine abuse as an alternative specimen for urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号