首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   1篇
工人农民   1篇
世界政治   2篇
法律   79篇
政治理论   1篇
  2020年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   9篇
  2011年   6篇
  2009年   2篇
  2008年   5篇
  2007年   10篇
  2006年   3篇
  2005年   8篇
  2004年   4篇
  2003年   15篇
  2002年   7篇
  2001年   1篇
  2000年   1篇
  1999年   6篇
排序方式: 共有83条查询结果,搜索用时 0 毫秒
51.
Venous air embolism (VAE) is an often occurring forensic finding in cases of injury to the head and neck. Whenever found, it has to be appraised in its relation to the cause of death. While visualization and quantification is difficult at traditional autopsy, Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) offer a new potential in the diagnosis of VAE. This paper reports the findings of VAE in four cases of massive head injury examined postmortem by Multislice Computed Tomography (MSCT) prior to autopsy. MSCT data of the thorax were processed using 3D air structure reconstruction software to visualize air embolism within the vascular system. Quantification of VAE was done by multiplying air containing areas on axial 2D images by their reconstruction intervals and then by summarizing the air volumes. Excellent 3D visualization of the air within the vascular system was obtained in all cases, and the intravascular gas volume was quantified.  相似文献   
52.
53.
In the field of the documentation of forensics-relevant injuries, from the reconstructive point of view, the forensic, CAD-supported photogrammetry plays an important role; particularly so when a detailed 3-D reconstruction is vital. This is demonstrated with a soft-tissue injury to the face caused by being run over by a car tire. Since the objects (injury and surface of the tire) to be investigated will be evaluated in virtual space, they must be series photographed. These photo sequences are then evaluated with the RolleiMetric multi-image evaluation system. This system measures and calculates the spatial location of points shown in the photo sequences, and creates 3-D data models of the objects.In a 3-D CAD program, the model of the injury is then compared against the model of the possible injury-causing instrument.The validation of the forensic, CAD-supported photogrammetry, as shown by the perfect 3-D match between the tire tread and the facial injury, demonstrates how greatly this 3-D method surpasses the classic 2-D overlay method (one-to-one photography).  相似文献   
54.
Because the use of radiology in modern forensic medicine has been, until today, mostly restricted to conventional X-rays, which reduces a 3D body to a 2D projection, a detailed 3D documentation of a gunshot's wound ballistic effects was not possible. The aim of our study was to evaluate whether the progress in imaging techniques over the last years has made it possible to establish an observer-independent and reproducible forensic assessment using multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) technologies for the documentation and analysis of gunshot wounds. The bodies of eight gunshot victims were scanned by MSCT and by MRI; the data of these imaging techniques were post-processed on a workstation, interpreted and subsequently correlated with the findings of classical autopsy. With the spiral CT and MRI examinations and the subsequent 2D multi-planar reformation (MPR) and 3D shaded surface display (SSD) reconstruction, the entire gunshot-created complex skull fractures and brain injuries (such as wound channels and deeply-driven bone splinters) could be documented in complete and graphic detail. CT and MRI also documented vital reaction to the gunshot by demonstrating air emboli in the heart and blood vessels and the classic pattern of blood aspiration to the lung. Gunshot residues deposited within and under the skin were visible. In conclusion, we think that the radiological methods of MSCT and MRI have the potential to become a routine "virtual autopsy" tool in the future. Bullets and relevant histological samples from specific sites then might be won in image-guided minimally invasive fashion via percutaneous biopsy. The rapid application of developing radiological methods may lead to new horizons in forensic documentation and intravital as well as postmortem examination.  相似文献   
55.
In forensic pathology, the reactions that occur in the body from somatic death to cell death are commonly termed "supravital reactions". There are many reports of grossly visible and microscopic supravital reactions; however, few papers are available on the supravital reaction concerning gene expression. The aim of this study was to examine the gene expression of immediate early genes (IEGs) including c-fos, fos-B and c-jun in mechanically asphyxiated mouse brain and lung after somatic death and to identify the IEGs expressed at the point of supravital reaction in the brain and lung. Our results confirm that the expression of IEGs changed after death during supravital reaction and that the alterations differed according to the cause of death and the types of organ examined. In addition, IEG expression significantly increased following mechanical asphyxia. These results suggest that there is a specific pattern of gene expression following asphyxia. It is therefore important to identify the specific genes involved, as this may give significant information to aid in the post-mortem diagnosis of strangulation and hanging.  相似文献   
56.
Postmortem minimal invasive angiography has already been implemented to support virtual autopsy examinations. An experimental approach in a porcine model to overcome an initially described artificial tissue edema artifact by using a poly ethylene glycol (PEG) containing contrast agent solution showed promising results. The present publication describes the first application of PEG in a whole corpse angiographic CT examination. A minimal invasive postmortem CT angiography was performed in a human corpse utilizing the high viscosity contrast agent solution containing 65% of PEG. Injection was carried out via the femoral artery into the aortic root in simulated cardiac output conditions. Subsequent CT scanning delivered the 3D volume data of the whole corpse. Visualization of the human arterial anatomy was excellent and the contrast agent distribution was generally limited to the arterial system as intended. As exceptions an enhancement of the brain, the left ventricular myocardium and the renal cortex became obvious. This most likely represented the stage of centralization of the blood circulation at the time of death with dilatation of the precapillary arterioles within these tissues. Especially for the brain this resulted in a distinctively improved visualization of the intracerebral structures by CT. However, the general tissue edema artifact of postmortem minimal invasive angiography examinations could be distinctively reduced.  相似文献   
57.
Forensic three-dimensional/computer aided design (CAD)-supported photogrammetry (FPHG) plays an important role in the field of the documentation of forensic relevant injuries; particularly so when a detailed, 3D reconstruction is necessary. This is demonstrated in the case of a patterned blunt injury to the face of a victim, which injury was subsequently proven by FPHG to have been caused by a blow from the muzzle of a soft air gun.The objects to be evaluated had to be series photographed in order to be evaluated virtually on the computer. These photo series were then analyzed with the RolleiMetric system. This system measures and calculates the spatial location of distinctive points on the objects' surfaces, and creates 3D data models of the objects. In a 3D/CAD program, the "virtual 3D model of the injury" is then compared against the "virtual 3D model of the possible injury-causing instrument".The validation of FPHG, as shown by the 3D match between certain characteristics of the muzzle form and the facial injury, demonstrates how this 3D method can be used for patterned wound documentation and analysis.  相似文献   
58.
Abstract: A quantification of T1, T2, and PD in high isotropic resolution was performed on corpses. Isotropic and quantified postmortem magnetic resonance (IQpmMR) enables sophisticated 3D postprocessing, such as reformatting and volume rendering. The body tissues can be characterized by the combination of these three values. The values of T1, T2, and PD were given as coordinates in a T1–T2–PD space where similar tissue voxels formed clusters. Implementing in a volume rendering software enabled color encoding of specific tissues and pathologies in 3D models of the corpse similar to computed tomography, but with distinctively more powerful soft tissue discrimination. From IQpmMR data, any image plane at any contrast weighting may be calculated or 3D color‐encoded volume rendering may be carried out. The introduced approach will enable future computer‐aided diagnosis that, e.g., checks corpses for a hemorrhage distribution based on the knowledge of its T1–T2–PD vector behavior in a high spatial resolution.  相似文献   
59.
A 19-year-old man speeding recklessly along a highway caused a left-frontal crash with another car. After his vehicle came to a standstill, he climbed out of the wreck and crawled across the tarmac to the other side of the road, where he died several minutes after the accident and before the arrival of an ambulance. Postmortem multislice computed tomography (MSCT) demonstrated fractures of the first, second, and third ribs and scapula on the left, an extrapleural hemorrhage in the apical region of the left thorax, as well as a large amount of blood in the left thoracic cavity. These radiologic findings were indicative of a delayed rupture of a traumatic extrapleural hematoma into the pleural space. A traditional autopsy confirmed the very rare diagnosis of a traumatic extrapleural hemorrhage with a delayed rupture.  相似文献   
60.
Computed tomography (CT) and magnetic resonance (MR) imaging have become important elements of forensic radiology. Whereas the feasibility and potential of CT angiography have long been explored, postmortem MR angiography (PMMRA) has so far been neglected. We tested the feasibility of PMMRA on four adult human cadavers. Technical quality of PMMRA was assessed relative to postmortem CT angiography (PMCTA), separately for each body region. Intra-aortic contrast volumes were calculated on PMCTA and PMMRA with segmentation software. The results showed that technical quality of PMMRA images was equal to PMCTA in 4/4 cases for the head, the heart, and the chest, and in 3/4 cases for the abdomen, and the pelvis. There was a mean decrease in intra-aortic contrast volume from PMCTA to PMMRA of 46%. PMMRA is technically feasible and allows combining the soft tissue detail provided by MR and the information afforded by angiography.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号