首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
法律   2篇
  2021年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The changes of postmortem corneal opacity are often used to roughly estimate the postmortem interval (PMI) in forensic practice. The difficulty associated with this time estimate is the lack of objective means to rapidly quantify postmortem corneal changes in crime scenes. This study constructed a data analysis model of PMI estimation and implemented an intelligent analysis system for examining the sequential changes of postmortem corneal digital images, named Corneal‐Smart Phone, which can be used to quickly estimate PMI. The smart phone was used in combination with an attachment device that provided a darkroom environment and a steady light source to capture postmortem corneal images. By segmenting the corneal pupil region images, six color features, Red (R), Green (G), Blue (B), Hue (H), Saturation (S), Brightness (V) and four texture features Contrast (CON), Correlation (COR), Angular Second Moment (ASM), and Homogeneity (HOM), were extracted and correlated with PMI model. The results indicated that CON had the highest correlation with PMI (R2 = 0.983). No intra/intersubject variation in CON values were observed (p > 0.05). With the increase in ambient temperature or the decrease in humidity, the CON values were increased. PMI prediction error was <3 h within 36 h postmortem and extended to about 6–8 h after 36 h postmortem. The correct classification rate of the blind test samples was 82%. Our study provides a method that combines postmortem corneal image acquisition and digital image analysis to enable users to quickly obtain PMI estimation.  相似文献   
2.
In order to detect switching and/or manipulation of samples, the owner of a stallion asked our lab to perform a DNA test on a positive doping urine sample. The objective was to compare the urine DNA profile versus blood and hair DNA profiles from the same stallion. At first, 10 microsatellite markers were investigated to determine the horse identity. No results were obtained when horse specific markers were typed in the urine sample. In order to confirm the species origin of this sample we analyzed the mitochondrial cytochrome b gene. This analysis from blood and hair samples produced reproducible and clear PCR-RFLP patterns and DNA sequence match with those expected for horse, while the urine sample results were coincident with human. These results allowed us to exclude the urine sample from the questioned stallion and determine its human species origin, confirming the manipulation of urine sample.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号