首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterization and differentiation of aluminum powders used in improvised explosive devices – Part 1: Proof of concept of the utility of particle micromorphometry
Authors:JenaMarie Baldaino MS  Danica M Ommen PhD  Christopher P Saunders PhD  Jack Hietpas PhD  JoAnn Buscaglia PhD
Institution:1. FBI Laboratory, Explosives Unit, Quantico, Virginia, USA;2. Department of Statistics, Iowa State University, Ames, Iowa, USA;3. Department of Mathematics and Statistics, South Dakota State University, Brookings, South Dakota, USA;4. Microtrace LLC, Elgin, Illinois, USA;5. FBI Laboratory, Research and Support Unit, Quantico, Virginia, USA;6. JoAnn Buscaglia, PhD, FBI Laboratory, Research and Support Unit, Quantico, VA 22135, USA.;7. Email: jbuscaglia@fbi.gov
Abstract:Aluminum (Al) powders are commonly used in improvised explosive devices as metallic fuels, a component of explosive mixtures. These powders can be obtained readily from industrial‐scale and consumer products, and produced using unsophisticated “kitchen chemistry” techniques. This research demonstrates the potential of automated particle micromorphometry for comparisons between known source and questioned Al powders recovered from IEDs, as well as for insight into the method of Al powder manufacture. Al powder samples were obtained from legitimate manufacturers, and 56 samples were produced “in‐house” from Al‐containing spray paints and ball‐milled Al foils. Transmitted light microscope images of Al powder particles were acquired using an automated stage with automated z‐focus; 17 size and shape parameters were measured for all particles. Approximately 37,000–2,500,000 particles/sample were analyzed using an open‐source statistical package with customized code. Dimensionality reduction was required for processing the large datasets: eight of the 17 measured variables were selected based on inspection of the correlation matrix. Data from four subsamples from each of the 56 samples produced using “in‐house” methods were analyzed using ANOVA to assess the within‐ and between‐sample variation. High within‐sample variation was noted; however, ANOVA and post‐hoc Tukey's honestly significant difference (HSD) tests demonstrated that the between‐sample variation was substantially larger than the within‐sample variation. Each sample could be differentiated from all other samples in the test set. Future experiments will focus on ways to reduce the within‐sample variation, and additional statistical and microanalytical methods to classify sources and confidently constrain the method of Al powder manufacture.
Keywords:aluminum powder  explosives  micromorphometry  IED  amateur explosive methods  forensic intelligence
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号