首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 921 毫秒
1.
猪细小病毒Z株NS部分基因的扩增及序列分析   总被引:1,自引:0,他引:1  
从猪细小病毒Z株提取基因组DNA ,利用PCR扩增部分基因 ,并对该扩增片段进行测序与分析。结果表明 ,扩增的NS基因长 330bp ,编码 10 9个氨基酸。氨基酸序列中含有猪细小病毒的重要保守序列 ,并有 1个潜在的糖基化位点NFSN。Z株NS基因与其他猪细小病毒Kresse、NADL2 2、NADL2 1株的核苷酸同源性分别为 99%、98%、98% ,氨基酸同源性均为 99%。  相似文献   

2.
为进一步分析H7N2禽流感病毒(AIV)分离株血凝素(HA)基因的特性,参照已发表序列设计了1对引物,采用RT-PCR获得了1条约1.7 kb的DNA片段,测序后进行了同源性比较、HA基因系统发育进化树分析和氨基酸编码分析。结果表明,所测的2个分离株的HA基因全长1 664 bp,编码除信号肽以外的HA蛋白的全部544个氨基酸,其中包括HA1的323个氨基酸,HA2的221个氨基酸。2个分离株HA基因核苷酸序列的同源性为99.4%;与GenBank中AIV标准株A/Afri.Star./Eng-Q/983/79(H7N1)的同源性最高,分别为99.4%和99.0%;与美国A/Chicken/NewYork/13142-5/94(H7N2)株同源性很低(仅65.0%),而与以色列、意大利H7N2AIV的同源性较高(为96%~97%);2个分离株在HA基因进化树中均处于H7亚型AIV的欧亚群系分支内。推导氨基酸的序列分析表明,其HA蛋白裂解位点的氨基酸序列为-GR-GLF-,仅包含1个碱性氨基酸(R-)残基,符合低致病力AIV的基因特征。  相似文献   

3.
对从广西南宁和柳州分离的 2株猪瘟病毒E2基因进行了测序。应用DNAstar序列分析软件对所测 2个毒株GXNN、GXLZ的E2基因序列与猪瘟兔化弱毒株和石门 (Shimen)株进行了比较分析。结果显示 ,GXNN、GXLZ株与猪瘟兔化弱毒株核苷酸序列的同源性分别为 82 .1%和 82 .6 % ,推导氨基酸序列的同源性分别为 87.9%和 88.7% ;GXNN、GXLZ株与Shimen株核苷酸序列的同源性分别为 83.6 %和 84 .0 % ,推导氨基酸序列的同源性分别为 89.3%和 90 .1%。GXNN、GXLZ株与猪瘟兔化弱毒株和Shimen株的核苷酸序列和氨基酸序列都有明显差异。  相似文献   

4.
应用RT-PCR和nPCR扩增由4株甘肃省近期(1997-1998)猪瘟流行野毒株的E2基因,将其克隆到pGEMTEasy载体上,经转化、筛选、鉴定后,测出核苷核序列.4株流行毒株的E2基因核苷酸序列同源性为89.2%-99.7%,相应的氨基酸序列同源性为93.8%-99.0%.这4株流行毒株;与C-株(疫苗种毒)E2基因的核苷酸序列同源性为82.2%-84.3%,相应的氨基酸序列同源性为87.9%-90.2%,表明近期猪瘟流行毒株与C-株的gp55蛋白之间存在一定的差异.  相似文献   

5.
番鸭呼肠孤病毒S基因组的克隆与序列分析   总被引:1,自引:0,他引:1  
对番鸭呼肠孤病毒S12和S14毒株S基因组(S1-4)中σA、σB、σNS和σC蛋白基因进行了克隆和测序。序列分析表明:鸭呼肠孤病毒(DRV)与禽呼肠孤病毒(ARV)的σA和σNS基因的核苷酸同源性分别为76.0%~77.1%和78.4%~79.6%,氨基酸同源性分别为89.5%~91.2%和91.6%~92.7%;而具有诱导群特异性和型特异性中和抗体的σB和σC基因的核苷酸同源性分别为60.3%~64.4%和2.7%~9.9%,氨基酸同源性分别为61.4%~62.0%和22.6%~26.7%;DRV和ARV抗原性存在差异。而DRV S12/S14与法国89026株σA、σB、σNS和σC基因的核苷酸同源性分别为90.0%、93.6%、87.9%~88.0%和93.1%,氨基酸同源性分别为97.1%、94.3%、95.7%~95.9%和93.7%。进化树分析表明,DRV与ARV形成不同的分支,DRV是正呼肠孤病毒属中不同于ARV的一种新的呼肠孤病毒。  相似文献   

6.
23株猪瘟病毒E2基因主要抗原编码区序列差异分析   总被引:2,自引:0,他引:2  
用RT PCR及测序获得了 17株猪瘟病毒 (HCV) 2 5 1bp的E2基因主要抗原编码区序列 ,经DNAstar软件对获得的 17株HCV及已发表的 6株HCV毒株序列进行了比较和分析 ,并构建了HCV遗传发生树。结果 ,这 2 3株与石门株的序列相比 ,所有毒株的碱基变化随机地分布于整个序列 ,无缺失和插入 ,其中变化较大的区域位于序列的 3′端。 2 3株HCVE2基因主要抗原编码区核苷酸及氨基酸同源性分别为 74.1%~ 10 0 %、79.7%~ 10 0 % ,其中 4株 2 0世纪 70~ 80年代分离毒株的核苷酸及氨基酸同源性分别为 76.3 %~ 86.2 %、81.1%~ 87.8% ,10株 2 0世纪 90年代分离毒株的核苷酸及氨基酸同源性分别为 75 .4%~ 10 0 %、79.7%~ 10 0 %。所绘制的遗传发生树分为 2个组群 (group) ,每个组群分为 2个亚组群 (subgroup) ,14株猪瘟 (HC)流行毒株在 2个组群中均有分布 ,2 0世纪 70~ 80年代分离的 3株 (75 % )在组 群 2 ,2 0世纪 90年代分离的 5株 (5 0 % )在组群 1  相似文献   

7.
为了解福建省猪伪狂犬病病毒(PRV)野毒株的病原学特性及分子遗传变异情况,本研究用羊胚胎鼻甲细胞(OFTu)从疑似暴发伪狂犬病猪场死亡的育肥猪中分离到1株病毒,该病毒能够产生典型的PRV细胞病变,病毒液接种小鼠(0.1 mL/只)及成年兔(0.5 mL/只)在48~60 h死亡,均表现出典型的伪狂犬病症状。经PCR试验、电镜观察及特异性血清间接免疫荧光试验鉴定为伪狂犬病病毒,命名为MQ18株;并对其进行病毒效价的测定及gC、gE基因核苷酸和氨基酸序列差异性分析。结果显示,分离株TCID50为10~(-7.71)/0.1 mL;将其gC和gE基因序列与国内外17个PRV参考毒株进行同源性比较,核苷酸序列同源性分别为93.5%~99.9%和97.8%~100%,氨基酸序列同源性分别为88.7%~99.8%和95.7%~100%;分子遗传进化树分析显示,gC和gE基因均与国内近6年分离的PRV变异株集聚在一起,属于同一个进化分支;与经典株相比,gC基因编码的氨基酸序列在第63~69位有1个AAASTPA的连续7个氨基酸插入,gE基因编码的氨基酸序列分别在第48位和第496位有1个天冬氨酸(D)的插入,与PRV变异株变异位点相一致。以上结果证实,从发病猪群中分离到1株PRV变异株,本研究结果为选择合适疫苗来防控猪伪狂犬病以及病原学研究提供了参考。  相似文献   

8.
为实现番鸭呼肠孤病毒(MDRV)YB株NS非结构基因的克隆分析及原核表达,首先经RT-PCR扩增NS基因的完整编码序列(CDS),并将其克隆到p ET-32a(+)载体中。测序后对获得的NS基因进行核苷酸及氨基酸序列分析。将重组质粒转化至E.coli BL21(DE3)感受态细胞中,进行IPTG诱导表达及条件优化。对表达产物进行SDS-PAGE分析和Western-blot分析。测序结果显示,成功构建了包含MDRV-YB株NS基因的原核重组质粒p ET-YB-NS,并获取了NS基因序列。序列分析结果显示,MDRV-YB NS基因的CDS大小为1 908 bp,编码635个氨基酸;该基因核苷酸序列与传统MDRV的同源性为98.2%~99.4%。遗传进化树分析显示,MDRV-YB株处于传统型MDRV分支上。该蛋白氨基酸序列中并不含有潜在的信号肽序列,但是含有2个潜在的N-糖基化位点以及61个磷酸化位点。经IPTG诱导表达后,SDS-PAGE分析显示,成功高效表达出分子质量约为88.7 ku的融合蛋白(p-NS),表达时IPTG最佳诱导时间、浓度和温度分别为5 h、0.4 mmol/L和36℃。Western-blot结果显示,表达的p-NS蛋白能特异性识别MDRV阳性血清,表明表达产物具备良好的反应原性。上述结果表明,MDRV NS非结构基因的克隆分析及其蛋白表达的实现,为进一步研究MDRV NS蛋白功能奠定了基础。  相似文献   

9.
猪伪狂犬病病毒SL株gK基因的生物信息学分析   总被引:1,自引:0,他引:1  
对猪伪狂犬病病毒(PRV)四川分离株(SL株)gK基因进行分子克隆,并利用生物信息学软件对gK基因进行了同源性、遗传进化树、密码子偏向性、蛋白质二级结构预测及抗原表位分析。结果显示,成功克隆了PRVSL株gK全基因,其编码区长939bp,编码313个氨基酸残基,与其他PRV分离株核苷酸序列同源性为97.6%~99.9%,与国外分离株的同源性略高于国内分离株。gK基因存在4个跨膜区及1个明显的CpG岛。表明成功克隆了PRVSL株gK基因,该基因具有潜在的抗原性。  相似文献   

10.
用RT PCR方法从6个新城疫病毒(NDV)广东分离株中扩增HN基因cDNA片段,并将其克隆至pGEM T Easy载体进行核苷酸序列测定。结果表明,6个NDV分离株 HN基因片段长度均为1 704 bp,编码568个氨基酸;彼此间核苷酸和氨基酸同源性分别为 96.0%~99.8%和98.6%~100%,与其他基因Ⅶ型毒株的氨基酸序列同源性为 96.8%~98.4%;但与其他基因型毒株如D26、Ulster/67、B1、LaSota以及GB Texas的氨基酸同源性较低,为88.2%~91.0%。  相似文献   

11.
根据GenBank中登录的副猪嗜血杆菌(HPS)D15基因鸟枪序列(登录号:NZ_ABKM01000005)设计1对特异性引物,以HPS5型SP毒株DNA为模板,通过PCR方法扩增了D15基因。将其进行T-A克隆,构建pMD18D15质粒并进行序列测定和分析。结果表明,D15基因含有一个2418bp的开放阅读框,编码805个氨基酸,与D15基因参考序列的同源性为99.9%。该HPSD15基因的推导氨基酸序列具有典型Omp85蛋白家族的拓扑结构特征。以pMD18D15质粒为模板,用PCR方法扩增HPSD15基因,并将其克隆到pET-28a(+)中,构建pETD15原核表达质粒,将其转化大肠杆菌Rosetta(DE3)后,用IPTG诱导重组菌,并用SDS-PAGE和Western-blot检测诱导物。结果表明,pETD15重组表达质粒在大肠杆菌中实现了高效表达,融合蛋白的分子质量约为94ku,融合蛋白能被HPS阳性血清识别,提示该融合蛋白具有反应原性。昆明小鼠和豚鼠免疫试验结果表明,D15重组蛋白具有一定的诱导免疫保护反应的能力。  相似文献   

12.
从湖南湘潭某发病猪场分离到1株病毒,该病毒可使Marc-145细胞产生CPE,应用猪生殖与呼吸综合征病毒检测试剂盒从感染细胞培养物中检测到猪生殖与呼吸综合征病毒,并将该分离毒株命名为HN/XT/07。采用RT-PCR方法扩增该分离毒株的Nsp2基因,并进行序列测定,发现在2932~3031 bp之间不连续缺失了87个核苷酸。序列比对结果显示,该分离毒Nsp2基因与PRRSV经典毒株Ch-1a的核苷酸同源性为85.5%,氨基酸同源性为80.1%;与2006~2007年流行的PRRSV高致病性变异毒株NX和SD的核苷酸同源性为95.3%~96.4%,氨基酸同源性为90.9%~95.6%。  相似文献   

13.
为了解广西壮族自治区猪繁殖与呼吸综合征病毒(PRRSV)流行毒株的遗传变异情况,对2008-2011年间来自广西各地的部分PRRSV阳性病料进行Nsp2基因的扩增和测序分析。结果显示,获得的49个毒株均为美洲型,其中46株具有高致病性变异毒株的序列特征,即其Nsp2蛋白缺失第481位和第533~561位aa,其余3株不具有上述缺失,属于PRRSV传统毒株。广西区49个毒株Nsp2基因间核苷酸序列的同源性介于84.8%~99.7%,与VR-2332、CH-1a、HB-1及JXA1株核苷酸序列的同源性分别为80.5%~83.7%、89.7%~92.6%、92.4%~96.3%、92.8%~99.3%,而与LV株核苷酸序列同源性仅为51.0%~53.9%。基于Nsp2基因核苷酸序列所绘制的遗传进化树,可将所有美洲型PRRSV毒株分为4个亚群,广西区的49个毒株有3株分布在以HB-1株为代表的Ⅲ亚群,46株分布在以JXA1株为代表的Ⅳ亚群。表明,当前广西区PRRSV流行毒株均为美洲型毒株,并且以Ⅳ亚群为优势基因亚群,各毒株间的Nsp2基因序列存在一定的差异,但没有明显的地域特征。  相似文献   

14.
参考已发表的猪生殖与呼吸综合征病毒(PRRSV)ORF5基因序列,设计合成了1对覆盖完整ORF5基因区段的引物,克隆了PRRSV NX/HY株的ORF5基因(登录号为EU600287),并进行了序列比较.将该基因克隆到原核表达栽体pGEX-6P-1中,构建了融合表达质粒pGEX-6P-1-5并转化BL21,对表达蛋白进行Western-blot分析.结果表明,NX/HY分离株ORF5基因与PRRSV JX1、CH-la株的核苷酸序列同源性分别为99.2%和95.2%,推导的氨基酸序列的同源性分别为98.5%和92.5%;层析扫描分析显示,目的蛋白的含量约占菌体总蛋白的30%,且具有良好的反应原性.GP5蛋白的表达为建立相应的血清学诊断方法奠定了基础.  相似文献   

15.
以国内主要流行的猪胸膜肺炎放线杆菌 (APP)QH 1、HN 7菌株的基因组DNA为模板 ,通过PCR方法扩增出外膜脂蛋白 (OML)基因片段 ,然后将其克隆至 pMD18 T载体中 ,经酶切和PCR鉴定 ,对阳性克隆进行序列测定。将测序结果分别与标准菌株进行比较 ,QH 1株的核苷酸序列与血清 1、9、11、12型参考株的同源性达 99.1%~ 99.9% ;HN 7株的核苷酸序列与血清 7、3、4、6型参考株的同源性达 97.3%~ 10 0 % ,与其他血清型参考株的同源性较低。  相似文献   

16.
根据GenBank中收录的犬瘟热病毒(CDV)Onderstepoort株核蛋白基因(N)序列,设计了1对特异性引物,用该引物对分离的TN野毒株进行了RT PCR扩增;将扩增得到的PCR片段纯化后与pGEM T质粒连接,得到重组质粒pTN。经核苷酸序列测定,CDVTN株N基因的ORF全长1569bp,编码523个氨基酸;将TN野毒株与GenBank中收录的其他CDV毒株进行比较,N基因核苷酸序列的同源性为94%~99%,推导的N蛋白氨基酸序列的同源性为97%~99%。TN株与Onderstepoort疫苗株氨基酸序列的差异主要集中在N端(17~159位)和C端(408~519位),中间的区域则高度保守。此外,在CDVN蛋白N端281~289位上也发现存在与麻疹病毒(MV)N蛋白完全相同的Y P A L G L H E F9肽序列,推测可能是诱导CTL活性的靶蛋白的抗原表位之一。氨基酸组成分析发现,推导的N蛋白氨基酸序列中亮氨酸、丝氨酸和异亮氨酸所占比例很高,提示该蛋白具有高度螺旋和缠绕的分子结构。  相似文献   

17.
根据GenBank中猪圆环病毒Ⅰ型(PCV1)ORF1基因序列,设计合成了1对引物,对PCV1 ORF1基因进行PCR扩增,将扩增出的ORF1基因(939 bp)克隆入pMD18-T载体,将筛选获得的重组质粒命名为pMD-ORF1。测序分析表明,克隆的ORF1与广东分离株DQ659154的核苷酸序列同源性高达99.6%,推导的氨基酸序列同源性为99.4%。将ORF1双酶切产物插入原核表达载体pET-41a,得到的重组子命名为pET-ORF1。用IPTG进行诱导表达,收集菌液进行SDS-PAGE和Western-blot分析,结果表明,PCV1ORF1在pET-41a中获得了高效融合表达,其表达蛋白的分子质量约为67.6 ku。  相似文献   

18.
将北京地区猪繁殖与呼吸综合征病毒(PRRSV) 分离株BJ2 和BJ4 的ORF 7 及部分3’端非编码区( UTR) 的RTPCR 扩增产物克隆连接于p GEMTeasy 质粒载体上,重组质粒经EcoR Ⅰ酶切鉴定后进行了双链测序。测定的基因序列与欧美标准毒株已知序列比较发现,BJ2 和BJ4 株与美洲VR2332 株非常接近,在其长度为555 bp 的cDNA 序列中,仅与VR2332 株分别相差1 和2 个核苷酸,其中ORF 7 的核苷酸序列与VR2332 株同源性分别高达100 % 和99 .46 % ,其推导的氨基酸序列与VR2332 株同源性分别为100 % 和99 .25 % ,3’UTR 则完全相同;而与欧洲LV 株则有明显差异,其核苷酸序列同源性仅为68 .00 % 和67 .00 % ,推测的氨基酸序列同源性仅有65 .00 % 和64 .00 % ,且BJ2 和BJ4 株与LV 株相比缺失了KKSTAPM 和ASQG 两段氨基酸序列,而3’UTR 则比LV 株多出38 nt 的一段特征性核苷酸序列。序列分析结果表明,BJ2 和BJ4 株属于同一基因型,且具有VR2332 株的基因特点  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号