首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Length variation in HV2 of the human mitochondrial DNA control region.   总被引:8,自引:0,他引:8  
Hair samples were typed from three individuals who exhibited length heteroplasmy in the homopolymeric cytosine stretches (C-stretch) in hypervariable region 2 (HV2). The study demonstrated that for different hairs within an individual, the HV2 C-stretch region can vary with respect to the number of cytosines and/or proportion of C-stretch length variants. Length heteroplasmy may occur regardless of the prominent length variant present in this region. Differences in the number of cytosines at the C-stretch region, or a variation in the relative amounts of heteroplasmic length variants, cannot be used to support an interpretation of exclusion.  相似文献   

2.
人类mtDNA控制区异质性   总被引:1,自引:0,他引:1  
Cao Y  Wan LH  Gu LG  Huang YX  Xiu CX  Hu SH  Mi C 《法医学杂志》2006,22(3):190-192
目的观察mtDNA的点突变异质性和长度异质性。方法运用直接测序法对50名无关个体及16名母系家族成员的血液、口腔上皮细胞、头发的mtDNAHVI、HVII区序列进行分析,并对20例HVI区直接测序失败的无关个体进行克隆后测序分析。结果同一个体的三种检材样本及16名母系家族成员的序列一致,未见异质性存在;同一个体的不同克隆的C延伸区的长度有差异,存在长度异质性。但同一个体的血液和头发具有相似的长度变异类型,即长度异质性在组织间无差异。结论mtDNA碱基序列具有同质性及稳定性,适用于法医学检案。  相似文献   

3.
目的应用Ion Torrent PGM~(TM)测序系统对人线粒体DNA(mitochondria DNA,mtDNA)全序列进行分析检测,研究不同组织间mt DNA序列差异情况。方法通过法医尸体检验采集6名无关个体的组织样本,包括胸腔血液、头发、肋软骨、指甲、骨骼肌和口腔上皮。使用4对引物对线粒体全序列进行扩增,应用Ion Shear~(TM)Plus Reagents试剂盒和Ion Plus Fragment Library试剂盒等构建文库,并在Ion Torrent PGM~(TM)测序系统上进行线粒体基因组全序列测序,并针对异质性位点和在HVⅠ区域突变位点,进行Sanger测序验证。结果所有样本的全基因组mtDNA都扩增成功,6名无关个体分属于6种不同的单倍型,同一个体不同组织之间mtDNA存在异质性差异。异质性位点和HVⅠ区域突变位点采用Sanger测序结果均得到验证。通过Kappa统计方法进行一致性检验后发现,相同个体不同组织的mtDNA序列检验结果仍具有较好的一致性。结论本研究所采用的人线粒体基因组全序列的测序检验方法,可以检测出同一个体不同组织间mtDNA的异质性差异,该差异具有较高的一致性,该结果对mtDNA在法庭科学中的应用具有指导作用。  相似文献   

4.
Abstract: Mitochondrial DNA (mtDNA) analysis has proved useful for forensic identification especially in cases where nuclear DNA is not available, such as with hair evidence. Heteroplasmy, the presence of more than one type of mtDNA in one individual, is a common situation often reported in the first and second mtDNA hypervariable regions (HV1/HV2), particularly in hair samples. However, there is no data about heteroplasmy frequency in the third mtDNA hypervariable region (HV3). To investigate possible heteroplasmy hotspots, HV3 from hair and blood samples of 100 individuals were sequenced and compared. No point heteroplasmy was observed, but length heteroplasmy was, both in C‐stretch and CA repeat. To observe which CA “alleles” were present in each tissue, PCR products were cloned and re‐sequenced. However, no variation among CA alleles was observed. Regarding forensic practice, we conclude that point heteroplasmy in HV3 is not as frequent as in the HV1/HV2.  相似文献   

5.
目的用PCR和ESI-TOF-MS分型技术检测线粒体DNA(mtDNA)D环高变区,通过碱基组成分析mtDNA的异质性。方法从华东汉族群体选取12名无关个体,用PLEX-ID平台进行mtDNA分型。该平台使用12对引物,对mtDNA高变区1(HVⅠ,引物所跨区域为15893~16451)进行碱基组成分析;使用另外12对引物,对mtDNA高变区2(HVⅡ,引物所跨区域为5~603)进行碱基组成分析,考察mtDNA异质性频率。结果 mtDNA多态性区域的碱基组成信息反映出区段内有无异质性。在高变区Ⅰ的12个区段中,有3个区段表现出多聚C长度异质性:在mtDNA高变区Ⅱ(31~576)的12个区段中,有3个区段检见点异质性,另外5个区域检见Poly C长度异质性。结论群体调查表明,mtDNA的序列异质性多见于高变区Ⅱ的103~267区段,多聚C长度异质性多见于高变区Ⅰ的16124~16201、16157~16201、16182~16250区段和高变区Ⅱ的234~367、431~576区段。将mtDNA标记用于母系关系检验和(或)个体识别时,需要格外留意这些异质性信息,以免结论错误。  相似文献   

6.
Abstract:  Denaturing high-performance liquid chromatography (DHPLC) was evaluated as a sequencing-independent means of detecting the presence of sequence differences in pair-wise mixtures of nonconcordant amplicons of human mitochondrial DNA (mtDNA). A total of 920 pair-wise combinations of HV1 and HV2 mtDNA amplicons from 95 individuals were assayed by DHPLC for sequence concordance/nonconcordance. For the 72 combinations of amplicons from different individuals who shared identical DNA sequences, DHPLC assays consistently indicated sequence concordance between the samples. This was in 100% agreement with sequencing data. For the 849 combinations of amplicons which differed in sequence, DHPLC detected the presence of sequence nonconcordance in all but 13 assays to yield 98.5% concordance with sequencing. Thus, DHPLC can be used to detect a diversity of sequence differences (transitions, transversions, insertions, and deletions) in the mtDNA D-loop. Accordingly, DHPLC may have utility as a presumptive indicator of mtDNA sequence concordance samples, as a screen for heteroplasmy/situational mixtures, and as a means for the physical fractionation of the individual contributors to an mtDNA mixture prior to sequencing.  相似文献   

7.
脱落毛发线粒体DNA HV1区序列测定的研究   总被引:2,自引:1,他引:2  
目的 对脱落毛发线粒体DNAHV1区序列测定方法进行研究。方法 嵌合扩增结合末端荧光标记DNA测序。结果 对 2 0例脱落毛发进行分析获得了明确的测序结果 ,与来自同一个体的血液所测得的DNA序列进行比较 ,完全相同。结论 嵌合扩增在对脱落毛发进行线粒体DNA多变区序列分析中是一种有效的方法 ,在法医DNA检验中具有实用价值。  相似文献   

8.
目的建立简单、有效的m tDNA单倍型检测及异质性筛查技术,并获取其相应的汉族人群频率分布。方法用PCR-DGGE技术对200例武汉汉族无关个体外周血m tDNA HVⅠ15997~16174nt和16208~16401nt区域进行分型检测。结果200例汉族无关个体中,15997~16174nt和16208~16401nt区域分别检出20种和22种单倍型,其单倍型多样性(HD值)分别为0.8159和0.8844;m tDNA HVⅠ组合单倍型共90种,其HD值达0.9803。两区域分别有4名和2名个体观察到异质性,其发生率为3%。结论PCR-DGGE是一种简单、灵敏、高效的m tDNA多态性及异质性检测技术,可应用于法医学实践。  相似文献   

9.
目的建立简单、有效的mtDNA单倍型检测及异质性筛查技术,并获取其相应的汉族人群频率分布。方法用PCR结合变性梯度凝胶电泳(DGGE)技术对200例武汉汉族无关个体外周血mtDNA HVⅡ29~290nt区域进行分型检测。结果200例汉族无关个体中,检出17种单倍型,其单倍型多样性(HD值)为0.8826;有4名个体观察到异质性,其发生率为2%。结论PCR-DGGE是一种简单、灵敏、高效的mtDNA多态性及异质性检测技术,可应用于法医学实践。  相似文献   

10.
Sequence analysis of HV2 in mitochondrial DNA has been performed as a tool for forensic identification, in addition to that of HV1. HV2 contains length heteroplasmy, which shows high variability within an individual or in maternal relatives. In this study, we used cloning analysis and PCR direct sequencing to compare, between mothers and their children, HV2 length heteroplasmic profiles in different tissues. For two mother-child pairs, different types of variant distribution were observed by cloning analysis. In pair 1, length heteroplasmic patterns in most tissues were similar (predominantly 9 and 10Cs variants), but different length heteroplasmic levels, with shifts in predominant genotype, were observed for some hairs in both mother and child. In pair 2, genotype distribution was similar for all tissues, with a predominant 8Cs genotype, but varying in the proportion of minor component. The proportion of one minor length variant (9Cs) in blood from the child was significantly higher than that from the mother, but the proportions of minor components (7 and/or 9Cs) in other tissue samples decreased from mother to child. Moreover, we could confirm that sequence types of PCR products were reflected by the distribution of length variants, which were observed especially in high proportion, in cloning analysis. Our results reveal variable changes in length heteroplasmic level in various tissues between generations. Variability between tissues, especially among hairs, within an individual would result in complicated differences in genotype distribution between maternal generations, and correlate with longer length of Cs for predominant variants.  相似文献   

11.
This study presents a reliable method that uses high-fidelity long-range PCR and optimized primers to assess polymorphism and to genotype human mitochondrial DNA (mtDNA). This method was used to analyze polymorphic sites in the human mtDNA control region, including hypervariable regions I, II, and III (HVI, HVII, and HVIII), from 124 unrelated Japanese individuals. In HVI, HVII, and HVIII, 80, 37, and 14 polymorphic sites were identified, respectively, excluding those in the homopolymeric cytosine stretch (C-stretch) regions. The region between HVI and HVII also contained 15 polymorphic sites. On the other hand, C-stretch length heteroplasmy in HVI or HVII was observed in 66 of 124 Japanese individuals (53%), which is much higher than in Caucasian populations. The variants in the C-stretch regions were characterized by counting the number of heteroplasmic peaks split from the single peak in homoplasmic sequences (i.e., 16244G and 16255G in HVI and 285G in HVII). Including the C-stretch length heteroplasmy, the 124 Japanese mtDNA samples were classified into 116 distinct haplotypes. The random match probability and the genetic diversity were estimated to be 0.95% and 0.998581, respectively, indicating that the method presented here has higher discrimination than the conventional method for mtDNA typing using HVI and HVII. [Correction added after publication 30 January 2007: in the preceding sentence random match probability and genetic diversity estimates were corrected from 0.95 and 0.998581%, respectively, to 0.95% and 0.998581, respectively.] The haplogroups and their frequencies observed in this study (i.e., D4; 13.7%, M7a1; 11.3%, D4a; 9.7% and M7b2; 8.9%) were similar to those observed in other studies of Japanese mtDNA polymorphism. The method described here is suitable for forensic applications, as shown by successful analysis of tissues from highly putrefied remains of an infant, which allowed maternal relationship to be determined via mtDNA haplotyping.  相似文献   

12.
The analysis of mitochondrial DNA (mtDNA) is a useful tool in forensic cases when sample contents too little or degraded nuclear DNA to genotype by autosomal short tandem repeat (STR) loci, but it is especially useful when the only forensic evidence is a hair shaft. Several authors have related differences in mtDNA from different tissues within the same individual, with high frequency of heteroplasmic variants in hair, as also in some other tissues. Is still a matter of debate how the differences influence the interpretation forensic protocols. One difference between two samples supposed to be originated from the same individual are related to an inconclusive result, but depending on the tissue and the position of the difference it should have a different interpretation, based on mutation-rate heterogeneity of mtDNA. In order to investigate it differences in the mtDNA control region from hair shafts and blood in our population, sequences from the hypervariable regions 1 and 2 (HV1 and HV2) from 100 Brazilian unrelated individuals were compared. The frequency of point heteroplasmy observed in hair was 10.5% by sequencing. Our study confirms the results related by other authors that concluded that small differences within tissues should be interpreted with caution especially when analyzing hair samples.  相似文献   

13.
Mutation analysis in the mitochondrial DNA (mtDNA) control region is widely used in population genetic studies as well as in forensic medicine. Among the difficulties linked to the mtDNA analysis, one can find the detection of heteroplasmy, which can be inherited or somatic. Recently, age-related point mutation A189G was described in mtDNA and shown to accumulate with age in muscles. We carried out the detection of this 189 heteroplasmic point mutation using three technologies: automated DNA sequencing, Southern blot hybridization using a digoxigenin-labeled oligonucleotide probe, and peptide nucleic acid (PNA)/real-time PCR combined method on different biological samples. Our results give additional information on the increase in mutation frequency with age in muscle tissue and revealed that the PNA/real-time PCR is a largely more sensitive method than DNA sequencing for heteroplasmy detection. These investigations could be of interest in the detection and interpretation of mtDNA heteroplasmy in anthropological and forensic studies.  相似文献   

14.
目的建立筛选线粒体DNA异质性的DHPLC方法;检测线粒体DNA高变区的异质性频率。方法选取尸体18例,分别提取血、心、肝、脾、肺、肾、胰腺、脑、肌肉、皮肤、肋骨、指甲及毛发的mtDNA,用DHPLC筛选异质型样本,并用直接测序法进行验证。结果9例个体存在异质性,肌肉组织出现的异质性频率最高。结论正确认识线粒体DNA异质性对于法医学应用领域具有指导意义。  相似文献   

15.
Abstract: There are several areas within mitochondrial DNA that show length heteroplasmy. If the heteroplasmy pattern is unique and consistent for each person, it may be used to support an interpretation of exclusion in identity testing. We investigated whether the length heteroplasmy pattern would be consistent under different amplification conditions. We also determined whether various amplification parameters would affect the homopolymeric cytosine stretches (C‐stretch) in HV1. Monoclonal samples tended to be heteroplasmic after amplification. After several repetitions, C‐stretch patterns of all samples were inconsistent even under the same amplification conditions. Increased PCR cycles and high template concentrations resulted in a more frequent heteroplasmic tendency. These amplification parameters seem to have little effect if samples are not long enough in C‐stretch or total length of the segment from nt 16180 to nt 16193. It is suggested that the pattern of length heteroplasmy cannot be used as an additional polymorphic marker.  相似文献   

16.
The sequences of the two hypervariable (HV) segments of the mitochondrial DNA (mtDNA) control region were determined in 167 randomly selected, unrelated individuals living in the state of Alagoas, north-eastern Brazil. One hundred and forty-five different haplotypes, associated with 139 variable positions, were determined. More than 95% of the mtDNA sequences could be allocated to specific mtDNA haplogroups according to the mutational motifs. Length heteroplasmy in the C-stretch HV1 and HV2 regions was observed in 22 and 11%, respectively, of the population sample. The genetic diversity was estimated to be 0.9975 and the probability of two random individuals presenting identical mtDNA haplotypes was 0.0084. The most frequent haplotype was shared by six individuals. All sequences showed high-quality values and phantom mutations were not detected. The diversity revealed in the mitochondrial control region indicates the importance of this locus for forensic casework and population studies within Alagoas, Brazil.  相似文献   

17.
Mitochondrial DNA heteroplasmy among hairs from single individuals   总被引:4,自引:0,他引:4  
A denaturing gradient gel electrophoresis (DGGE) assay was used to detect mitochondrial DNA (mtDNA) sequence heteroplasmy in 160 hairs from each of three individuals. The HV1 and HV2 heteroplasmic positions were then identified by sequencing. In several hairs, the heteroplasmic position was not evident by sequencing and dHPLC separation of the homoduplex/heteroduplex species was carried out with subsequent reamplification and sequencing to identify the site. The overall detection frequency of sequence heteroplasmy in these hairs was 5.8% (28/480) with DGGE and 4.4% (21/280) with sequencing. Sequence heteroplasmy of hair was observed even when the reference blood sample of the individual was homoplasmic. The heteroplasmic positions were not necessarily observed at sites where high rates of substitution have been reported. In two hairs, a complete single base change from the reference blood sample was observed with sequencing, while the heteroplasmic condition at that site in the hair was observed using DGGE. The DGGE results in such samples would serve as an aid in considering the possibility of match significance. In a forensic case, this situation would lead to the possibility of a failure to exclude rather than to be inconclusive.  相似文献   

18.
A denaturing gradient gel electrophoresis (DGGE) assay has been developed for comparative identity and homogeneity testing of the mtDNA HV1 region. A total of 49 pairs of sequences, each pair differing by a single unique polymorphism, were tested to verify the reliability of the assay. Discrimination between all pairings was achieved as judged by the resolution of the mismatch-containing heteroduplexes from the fully base-paired homoduplexes. In all but two pairings, resolution of the fully base-paired homoduplexes was also obtained. Sequence pairs differing by multiple polymorphisms were also tested and resulted in a greater separation between the homo- and heteroduplexes. Additional information derived from the technique includes the identification of co-amplifying contaminating or heteroplasmic samples in the independent samples lanes. Thirteen heteroplasmic samples, six at positions distinct from those analyzed in the pairwise comparison study, were analyzed and the heteroplasmic positions identified unambiguously by sequencing the excised bands. The technique constitutes a conceptually simple, accurate, and inexpensive test for determining whether two sequences match within the mtDNA HV1 region, while providing a more definitive control for the identification of co-amplifying contaminating or heteroplasmic sequences than is presently available.  相似文献   

19.
中国汉族人mtDNA控制区异质性遗传规律   总被引:2,自引:0,他引:2  
Jiang QC  Tong DY  Sun HY  Ou JH  Chen LX  Wu XY 《法医学杂志》2006,22(3):198-203
目的探讨中国汉族人mtDNA控制区异质性分布情况和遗传规律。方法将人mtDNA控制区扩增成6个部分互相重叠的片段,利用已建立的DHPLC技术分析其异质性规律。结果对150例汉族无关个体的多种组织检测,发现异质性个体的发生率达34%(51/150);个体的组织mtDNA异质性检出率最高为脑(50/150)、心肌(48/150)、最低为骨骼(22/150);本组共发现mtDNA控制区异质性位点有36个;同一个体可有多个异质性位点,最多的不超过3个;未发现异质性发生率有性别差异;超过41岁的高年龄组的异质性发生率(27/59)高于低年龄组(24/91);同一个体在2年前后取的血样,异质性检测结果一致;同一母系不同成员的异质性位点相同,但异质性mtDNA的含量有差异。结论DHPLC检测mtDNA控制区异质性具有高分辩力;mtDNA控制区异质性在中国汉族人中广泛存在;上述结果可作为mtDNA控制区多态性作个人认定和亲权鉴定的指导性资料。  相似文献   

20.
A collaborative exercise was carried out by the European DNA Profiling Group (EDNAP) in order to evaluate the distribution of mitochondrial DNA (mtDNA) heteroplasmy amongst the hairs of an individual who displays point heteroplasmy in blood and buccal cells. A second aim of the exercise was to study reproducibility of mtDNA sequencing of hairs between laboratories using differing chemistries, further to the first mtDNA reproducibility study carried out by the EDNAP group. Laboratories were asked to type 2 sections from each of 10 hairs, such that each hair was typed by at least two laboratories. Ten laboratories participated in the study, and a total of 55 hairs were typed. The results showed that the C/T point heteroplasmy observed in blood and buccal cells at position 16234 segregated differentially between hairs, such that some hairs showed only C, others only T and the remainder, C/T heteroplasmy at varying ratios. Additionally, differential segregation of heteroplasmic variants was confirmed in independent extracts at positions 16093 and the poly(C) tract at 302-309, whilst a complete A-G transition was confirmed at position 16129 in one hair. Heteroplasmy was observed at position 16195 on both strands of a single extract from one hair segment, but was not observed in the extracts from any other segment of the same hair. Similarly, heteroplasmy at position 16304 was observed on both strands of a single extract from one hair. Additional variants at positions 73, 249 and the HVII poly(C) region were reported by one laboratory; as these were not confirmed in independent extracts, the possibility of contamination cannot be excluded. Additionally, the electrophoresis and detection equipment used by this laboratory was different to those of the other laboratories, and the discrepancies at position 249 and the HVII poly(C) region appear to be due to reading errors that may be associated with this technology. The results, and their implications for forensic mtDNA typing, are discussed in the light of the biology of hair formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号