首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The precision and accuracy of an Alcolmeter Pocket Model breath alcohol instrument have been investigated in experiments with human subjects under controlled conditions. The instrument response was zero in all tests with breath samples from alcohol-free subjects. The standard deviations of ethanol determinations in breath were ±0.0722 mg/ml during ethanol absorption and ±0.0416 mg/ml during ethanol elimination. The standard deviation during the elimination phase increased with ethanol concentration in the sample, being ±0.0416 mg/ml on average at a mean concentration of 0.420 mg/ml, corresponding to a coefficient of variation of 9.9%.The blood alcohol estimates using the Alcolmeter were somewhat too high during active absorption of ethanol, and too low during elimination, when a constant blood-breath alcohol ratio of 2100:1 was used to calibrate the instrument. During the elimination phase of ethanol kinetics and at a mean blood alcohol concentration of 0.50 mg/ml, the mean Alcolmeter result was 0.456 ± 0.169 mg/ml with 95% confidence, i.e. varying between 0.287 and 0.625 mg/ml 95 times out of 100 tests at this critical blood alcohol level.  相似文献   

2.
In a study of postmortem ethanol concentrations, blood was withdrawn from the right atrium, ascending aorta, and inferior vena cava. These samples, vitreous humor, and gastric fluid were analyzed in 307 autopsies, where a minimum blood ethanol concentration of 0.05% weight/volume (w/v) was present. Premortem, agonal, and postmortem events were reviewed in an attempt to account for differences in blood ethanol concentrations between sites. The agonal aspiration of vomitus having at least 0.80% w/v ethanol appears to be associated with an increase in aortic ethanol concentrations. We conclude that valid interpretation of postmortem ethanol concentrations must take into consideration the possible entry of ethanol into the pulmonary venous circulation via the respiratory system.  相似文献   

3.
To determine ethanol in human post-mortem blood samples is problematic, largely due to the inappropriate and variable methods of preserving and storing, which can cause decomposition and loss of alcohol concentration. In this study, four crucial parameters of sample conservation were studied: temperature (T), percentage of air chamber in container (%CA), ethanol concentration in blood and post-mortem time. Blood samples from post-mortem cases were stored under different conditions (ethanol levels were known in all cases); factorial design variables: (%CA) 0, 5, 20, 35, 65%; storage temperature: 25, 4 and -10 degrees C; in a total of 15 experiments. No preserving agent was used in samples. Quantification of ethanol in blood was carried out by gas chromatography with head-space FID detector. Initial ethanol concentration ranged from 0.50 to 4.30 g/L. The kinetics of degradation observed was pseudo-first-order. The parameter that characterised the kinetics of ethanol degradation (k(0)) ranged from (4 x 10(-4) and 5.0 x 10(-1) day(-1)), depending on storage conditions. A strong dependence between ethanol degradation and the content of the air chamber was observed and this dependence was found to be stronger than that between degradation and temperature; there was an experimental relation between (k(0)) and (%CA). Activation energy for different conditions, i.e. 0, 5, 20, 35 and 65 (%CA), were calculated and contour plots were made. A mathematical equation relating air chamber, temperature and ethanol concentration at a certain time was determined. This equation allowed estimation of initial concentrations of ethanol with minimal error. A good correlation between experimental data and data calculated with the equation was obtained (r(2) = 0.9998). The best storage conditions were: 0% CA and storage at -10 degrees C, obtaining an ethanol degradation of 0.01% after 15 days. However, 33% of ethanol degradation was obtained with 35% CA at 25 degrees C after 15 days. This equation is useful in forensic cases in which original concentration of ethanol has to be estimated under different sample storage conditions.  相似文献   

4.
腐败血液中乙醇的顶空气相色谱分析   总被引:1,自引:0,他引:1  
目的分析血液腐败后产生的乙醇及其他物质并探讨腐败血液中乙醇的检测及计算方法。方法以正常人空白血液制作腐败血样,采用1,4-二氧六环为内标物,通过顶空气相色谱进行定性及定量分析。结果血中乙醇在0.0625~1mg/mL范围内线性关系良好(r^2=0.9996),各质量浓度组的变异系数(CV%)〈2%,血中乙醇的最低检出限为1μg/mL(S/N≥3)。腐败血样所产生乙醇与正丙醇的比例大致为25:1。结论检验方法简便、准确。为法医毒化检验相关工作提供了依据。  相似文献   

5.
The goal of the investigation was to research the influence of sex hormones on the elimination kinetics of ethanol. Forty-seven healthy men (average age 25+/-6.1 years) and 61 healthy women (average age 24+/-2.4 years) received 0.79-0.95g of ethanol/kg body weight in the form of an alcohol beverage of their choice. The target concentration for both sexes was a blood alcohol concentration (BAC) of 1.10g/kg. Blood samples for the determination of the ethanol concentration followed in the elimination phase in 10-20min intervals. The sex hormone levels (estradiol, progesterone and testosterone) were determined concomitantly from the serum. In men, the mean testosterone concentration was 5.3+/-1.6ng/ml, the mean estradiol concentration was 34.6+/-13.6pg/ml and the mean progesterone concentration was 0.9+/-0.3ng/ml. In women, the mean estradiol concentration was 47.6+/-52.6pg/ml and the mean testosterone concentration was 0.8+/-0.4ng/ml. Progesterone displayed a so-called dummy effect in women. In the high progesterone group (n=11), the mean concentration was 11.1+/-3.5ng/ml and in the low progesterone group (n=50) the mean was 0.6+/-0.3ng/ml. The mean hourly elimination rate (beta60) was 0.1677+/-0.0311g/kg/h in men. In women, the mean hourly elimination rate was 0.2044+/-0.0414g/kg/h in the high progesterone group and 0.1850+/-0.0276g/kg/h in the low progesterone group (p<0.05). The beta60 for women in the low progesterone group was significantly higher than that of the men, whose progesterone levels fell within a similar range (p>0.01). These results allow one to conclude that the gender differences in the pharmacokinetics of ethanol can partly, but not completely, be explained by progesterone levels.  相似文献   

6.
To clarify the circumstances of death, the degree of inebriation is of importance in many cases, but for several reasons the determination of the ethanol concentration in post-mortem samples can be challenging and the synopsis of ethanol and the direct consumption markers ethyl glucuronide (EtG) and ethyl sulphate (EtS) has proved to be useful. The use of a rather stable matrix like vitreous humor offers further advantages. The aim of this study was to determine the concentrations of ethanol and the biomarkers in the robust matrix of vitreous humor and to compare them with the respective levels in peripheral venous blood and urine. Samples of urine, blood from the femoral vein and vitreous humor were taken from 26 deceased with suspected ethanol consumption prior to death and analyzed for ethanol, EtS and EtG. In the urine samples creatinine was also determined. The personal data, the circumstances of death, the post-mortem interval and the information about ethanol consumption prior to death were recorded. EtG and EtS analysis in urine was performed by LC-ESI-MS/MS, creatinine concentration was determined using the Jaffé reaction and ethanol was detected by HS-GC-FID and by an ADH-based method. In general, the highest concentrations of the analytes were found in urine and showed statistical significance. The mean concentrations of EtG were 62.8mg/L (EtG100 206.5mg/L) in urine, 4.3mg/L in blood and 2.1mg/L in vitreous humor. EtS was found in the following mean concentrations: 54.6mg/L in urine (EtS100 123.1mg/L), 1.8mg/L in blood and 0.9mg/L in vitreous humor. Ethanol was detected in more vitreous humor samples (mean concentration 2.0g/kg) than in blood and urine (mean concentration 1.6g/kg and 2.1g/kg respectively). There was no correlation between the ethanol and the marker concentrations and no statistical conclusions could be drawn between the markers and matrices.  相似文献   

7.
The relationship between ethanol and risk of heroin overdosage was studied. Statistical processing of the results of forensic chemical analysis (460 expert evaluations) carried out in Chelyabinsk Regional Bureau of Forensic Medical Expert Evaluations in 2000 was carried out. The results of morphine and ethanol measurements in the blood and urine from corpses where deaths ensued from narcotic or ethanol poisoning, were analyzed. The concentrations of morphine in the blood and urine were measured on a gaseous chromatographer with mass-selective detector (Hewlett Packard HP 6890/HP-5972). Methods for measuring urinary and blood morphine are described. The results of statistical analysis demonstrated relationships between the age and ethanol concentrations in the blood and urine; blood ethanol and total urinary and blood morphine concentrations; blood concentration of free morphine and presence of 6-monoacetylmorphine in the blood. The authors conclude that the presence of ethanol in the blood together with morphine drastically augments the risk of rapid death from respiration arrest. It can also lead to a relatively high risk of overdosage in experienced narcomaniacs using heroin and ethanol.  相似文献   

8.
Ethanol concentration in alveolocapillary blood (ACB), venous blood (VB), capillary blood (CB), saliva and urine was measured in healthy men and women aged 19-45 years 20, 40, 60, 90, 120, 180, 240 and 300 min after a single intake of 20% ethanol solution in soda water in a dose 0.8 g/kg body mass. Two types of kinetic curves were established. Calculations with Vidmark equation for different biomedia were made. Ethanol levels in all BM studied coincided in the resorption phase. In the elimination phase, ethanol concentration forms a sequence: ACB < saliva < VB < urine. Correlations and correlation coefficients of ethanol concentrations in different BM were estimated. The ethanol concentration correlation urine/ACB 1.71 +/- 0.15 and VB/ACB 1.45 +/- 0.07 is proposed for use in tests for alcohol intoxication.  相似文献   

9.
A 20-year-old male was found on the passenger side of a small car after a collision with a semi-trailer truck. Postmortem blood, collected from the chest cavity, and vitreous humor samples were collected following harvesting of the heart and bones. Gas chromatographic analysis revealed a blood ethanol concentration of 0.32 g/dL and a vitreous humor ethanol concentration of 0.09 g/dL. The stomach was intact and full of fluid and food, but its contents were not collected. Possible explanations for the large difference between the two results include diffusion of ethanol from the stomach into the chest cavity, contamination of the blood sample prior to collection, and ingestion of a large quantity of ethanol shortly before death. This case demonstrates the importance of proper quality assurance procedures in collecting postmortem specimens and of collecting a vitreous humor sample for ethanol analysis in postmortem toxicology cases.  相似文献   

10.
顶空气相色谱法测定血液中乙醇不确定度的评估   总被引:1,自引:0,他引:1  
目的 评估血液中乙醇测定结果的不确定度。方法 用顶空气相色谱法测定血液样本中乙醇质量浓度,从测定程序分析测量不确定度的来源,计算测定结果的不确定度。结果 血液样本中乙醇质量浓度两次测定平均值为1.00mg/mL,扩展不确定度为0.02 mg/mL。结论 血液中乙醇测定结果的不确定度主要来源于平行测定的误差。  相似文献   

11.
Ma D  Zhuo XY  Bu J  Xiang P  Shen BH 《法医学杂志》2007,23(2):117-119
目的确定血液中乙醇最佳保存条件,探讨影响血液中乙醇含量稳定性的主要因素。方法对血液保存的温度(-20、4、20℃)、防腐剂(NaF、无防腐剂、Na2O2)、储存容器中空气所占比例(0%、25%、50%)和血醇质量浓度(0.2、0.8、2.0mg/mL)四个因素采用正交试验L9(34)方法分组,样本采用顶空气相色谱法进行测定,测定结果采用方差分析进行讨论。结果在20℃保存且不加入防腐剂的两组样本中血醇浓度变化明显,其余变化不明显。结论血液样本在4℃、储存容器中空气比例为50%和加防腐剂(NaF)的条件下保存,稳定性最佳;四个影响因素中温度为影响血液中乙醇含量稳定性的主要因素。  相似文献   

12.
Headspace gas chromatography was used to determine the concentration of ethanol and methanol in blood samples from 519 individuals suspected of drinking and driving in Sweden where the legal alcohol limit is 0.50 mg/g in whole blood (11 mmol/l). The concentration of ethanol in blood ranged from 0.01 to 3.52 mg/g with a mean of 1.83 +/- 0.82 mg/g (+/- S.D.). The frequency distribution was symmetrical about the mean but deviated from normality. A plot of the same data on normal probability paper indicated that it might be composed of two subpopulations (bimodal). The concentration of methanol in the same blood specimens ranged from 1 to 23 mg/l with a mean of 7.3 +/- 3.6 mg/l (+/- S.D.) and this distribution was markedly skew (+). The concentration of ethanol (x) and methanol (y) were positively correlated (r = 0.47, P less than 0.001) and implies that 22% (r2) of the variance in blood-methanol can be attributed to its linear regression on blood-ethanol. The regression equation was y = 3.6 + 2.1 x and the standard error estimate was 0.32 mg/l. This large scatter precludes making reliable estimates of blood-methanol concentration from measurements of blood-ethanol concentration and the regression equation. But higher blood-methanol concentrations are definitely associated with higher blood-ethanol in this sample of Swedish drinking drivers. Frequent exposure to methanol and its toxic products of metabolism, formaldehyde and formic acid, might constitute an additional health risk associated with heavy drinking in predisposed individuals. The determination of methanol in blood of drinking drivers in addition to ethanol could indicate long-standing ethanol intoxication and therefore potential problem drinkers or alcoholics.  相似文献   

13.
Our headspace gas chromatographic flame ionization detection (HS-GC-FID) method for ethanol determination showed slightly, but consistently, low ethanol concentrations in whole blood (blood) in proficiency testing programs (QC-samples). Ethanol and acetaldehyde were determined using HS-GC-FID with capillary columns, headspace equilibration temperature (HS-T degrees ) of 70 degrees C and 20 min equilibration time (HS-EqT). Full factorial designs were used to study the variables HS-T degrees (50 degrees -70 degrees C), HS-EqT (15-25 min), ethanol concentration (0.20-1.20 g/kg) and storage at room temperature (0-6 days) with three sample-sets; plasma, hemolyzed blood and non-hemolyzed blood. A decrease in the ethanol concentration in blood was seen as a nearly equivalent increase in the acetaldehyde concentration. This effect was not observed in plasma, indicating chemical oxidation of ethanol to acetaldehyde in the presence of red blood cells. The variables showed different magnitude of effects in hemolyzed and non-hemolyzed blood. A decrease in ethanol concentration was seen even after a few days of storage and also when changing the HS-T degrees from 50 to 70 degrees C. The formation of acetaldehyde was dependent on all the variables and combinations of these (interactions) and HS-T degrees was involved in all the significant interaction effects. Favorable instrumental conditions were found to be HS-T degrees of 50 degrees C and HS-EqT of 15-25 min. The ethanol concentrations obtained for the range 0.04-2.5 g/kg after analyzing authentic forensic blood samples with a HS-T degrees of 50 degrees C were statistically significantly higher than at 70 degrees C (+0.0154 g/kg, p < 0.0001, n = 180). In conclusion, chemical oxidation of ethanol to acetaldehyde in the presence of red blood cells has been shown to contribute to lowered ethanol concentrations in blood samples. Storage conditions before analysis and the headspace equilibration temperature during analysis were important for the determination of blood ethanol concentrations.  相似文献   

14.
15.
Healthy men drank 0.51, 0.68, and 0.85 g of ethanol per kilogram of body weight as neat whisky in the morning after an overnight fast. During 6 to 8 h after the whisky was consumed, nearly simultaneous specimens of fingertip blood and pooled bladder urine were obtained for analysis of ethanol using an enzymatic method. The mean ratios of ethanol concentration [urine alcohol concentration (UAC)/blood alcohol concentration (BAC)] were mostly less than unity during the absorption phase. The UAC exceeded the BAC in the postpeak phase. The mean UAC/BAC ratios varied between 1.4 and 1.7 when the BAC exceeded 0.50 mg/mL. When the BAC decreased below 0.40 mg/mL, the UAC/BAC ratios increased appreciably. The mean UAC/BAC ratios of ethanol were not dependent on the person's age between the ages of 20 and 60 years old, but there were large variations within the age groups. In apprehended drinking drivers (N = 654) with a mean BAC of 1.55 mg/mL, the UAC/BAC ratio of ethanol varied widely, with a mean value of 1.49. In 12 subjects (3.2%), the ratio was less than or equal to unity. In a second specimen of urine obtained approximately 60 min after an initial void (N = 135), the mean UAC/BAC ratio was 1.35 (standard deviation = 0.17). The magnitude of the UAC/BAC ratio of ethanol can help to establish whether the BAC curve was rising or falling at or near the time of voiding. The status of alcohol absorption needs to be documented if drinking drivers claim ingestion of alcohol after the offence or when back-estimation of the BAC from the time of sampling to the time of driving is required by statute.  相似文献   

16.
目的 检测分析腐败血液中乙醇、甲醇等物质的生成过程,为正确判断案发时人血液中醇类物质的实际浓度提供实验依据.方法 以正常健康人血液制作腐败样本,分别模拟人死亡后正常人血液和糖尿病人高糖血液的腐败过程,借助顶空气相色谱仪测定两种血液腐败后醇/醛类物质的生成情况并对比含量差异.结果 相同实验条件下,高糖血液较正常健康血液更...  相似文献   

17.
This study disproves the reliability of n‐propanol as a biomarker to establish whether the ethanol found in postmortem blood is derived from antemortem ingestion or postmortem putrefactive processes. Two groups of rats were given ethanol or normal saline solution, respectively, and sacrificed 1.5 h later. After putrefaction, blood and, in a few cases, urine samples from the rats were analyzed for ethanol and n‐propanol by head‐space gas chromatography equipped with flame ionization detection. Although the concentration ratios of ethanol/n‐propanol in the postmortem blood collected from the bodies without prior alcohol consumption were expected to be <20 (as per limited case reports and previous in vitro studies), in samples from several rats that were on saline solution, this ratio was found to exceed 20. In conclusion, the concentration ratio of ethanol/n‐propanol in postmortem blood does not allow for the discernment between antemortem ingestion and the postmortem synthesis of ethanol.  相似文献   

18.
An experiment was carried out on rats to determine whether or not a skeletal muscle sample was suitable for the determination of ethanol concentration in a carcass. Gas chromatography was used to estimate the ethanol and n-propanol concentrations in the femoral muscle and intracardial blood. The ethanol concentration of each sample was corrected according to the moisture ratio of circulating blood, viz., 78.5%.The ethanol concentration ratio of blood to muscle was 1.03 two hours after ethanol administration. When the carcasses of rats pre-treated with ethanol were stored at 15 °C and 25 °C, respectively, the ethanol concentrations in muscle and blood increased with time. At all times the concentration was higher in blood than in muscle, and also higher in samples collected from the carcass stored at 25 °C than at 15 °C.When the control carcass was stored in the same manner, the postmortem production of ethanol was noticed in both blood and muscle. As in the experimental rats, the control rats exhibited a higher blood ethanol than muscle ethanol level. Again, the ethanol concentration was higher in samples collected from the carcass stored at 25 °C than at 15 °C. The ratio of ethanol to n-propanol was less than 20:1 in blood and less than 10.1 in muscle.These results suggest that skeletal muscle may be a suitable tissue for the postmortem detection of ethanol.  相似文献   

19.
目的探讨乙醇对家免脑基底动脉零应力状态的影响。方法通过酒精灌胃的方法建立家兔血液乙醇浓度梯度的动物模型,测定各组家兔局部脑微区的血流灌注量;并通过测量血管张开角的方法测定各组家兔脑基底动脉的零压力状态。结果家兔灌酒后局部脑微区血流量值明显增大,至30min后,各组家兔脑血流量基本恒定;血液乙醇浓度持续增高,灌胃后1.5~2h,血液乙醇浓度达到峰值。灌酒后局部脑微区血流量值和血液乙醇浓度与灌酒量存在正相关关系。各组家兔酒精灌2h后基底动脉张开角均明显降低,各组之间差异存在统计学意义(P<0.05),且随灌胃量的增大基底动脉张开角降低越大。结论家兔基底动脉零应力状态随血液酒精浓度的增加而降低。  相似文献   

20.
Collections of expired air and chemical determinations of ethanol concentrations in inspired and expired air showed that during prolonged inspiration of ethanol (vapour)-containing air about 55% was absorbed by adult human subjects. The fractional absorption was not detectably affected by variations in tidal volume (0.7-2.1 liters), nor was it significantly reduced in experiments where, due to preceding oral intake, the ethanol concentration of systemic blood was up to 50 times higher than that of inspired air. In these experiments the difference between the rates of change in blood alcohol concentration (beta 60) during and before ethanol inhalation agreed well with values calculated from measured respiratory absorptions. Mass spectrometric recordings of ethanol concentration in expired air vs. expired volume, taken in a state of steady uptake, also gave absorption fractions of about 0.55, and showed that the concentration in end-expiratory air did not fall below some 30% of that of the inspired air. These and other findings show that a large part of ethanol being inspired is deposited in the airway linings to be released again to ethanol-free alveolar air expired through the airways. It is concluded that inspired ethanol deserves consideration as a source of elevations of blood alcohol concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号