首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This communication presents the quantitation and differential distribution of the enantiomers of 3,4-methylenedioxymethamphetamine (MDMA) and its physiologically active metabolite 3,4-methylenedioxyamphetamine (MDA) in a fatal poisoning following insufflation of MDMA, cocaine and heroin. Animal studies have demonstrated the stereoselective pharmacokinetics and neurotoxicity of these compounds; however, enantiomeric distributions have not been reported in humans. Quantitation of MDMA and MDA enantiomer was by gas chromatography/mass spectrometry (GC/MS) following chiral derivatization with N-trifluoroacetyl-l-triproyl chloride (LTPC). The decedents' blood concentration of S(+)-MDMA was slightly less than that of R(−)-MDMA (1.3 vs. 1.6 mg/l, respectively), while the S(+)- and R(−)-MDA blood concentrations were identical (0.8 mg/l). Both primary routes of excretion, bile and urine, had greater concentrations of R(−)-MDMA than the S(+) isomer. These fluids also contained twice the concentration of S(+)-MDA than the R(−)-isomer. These data indicate that S(+)-MDMA is metabolized and eliminated faster than R(−)-MDMA. The results appear to support the findings in animals regarding stereoselective metabolism of MDMA.  相似文献   

2.
A method for the identification of 3,4‐methylenedioxymethamphetamine (MDMA) and meta‐chlorophenylpiperazine (mCPP) was developed employing capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C4D). Sample extraction, separation, and detection of “Ecstasy” tablets were performed in <10 min without sample derivatization. The separation electrolyte was 20 mm TAPS/Lithium, pH 8.7. Average minimal detectable amounts for MDMA and mCPP were 0.04 mg/tablet, several orders of magnitude lower than the minimum amount encountered in a tablet. Seven different Ecstasy tablets seized in Rio de Janeiro, Brazil, were analyzed by CE‐C4D and compared against routine gas chromatography‐mass spectrometry (GC‐MS). The CE method demonstrated sufficient selectivity to discriminate the two target drugs, MDMA and mCPP, from the other drugs present in seizures, namely amphepramone, fenproporex, caffeine, lidocaine, and cocaine. Separation was performed in <90 sec. The advantages of using C4D instead of traditional CE‐UV methods for in‐field analysis are also discussed.  相似文献   

3.
In this work, the neutral and basic impurities found in the precipitate of MDMA(*)HCl are presented. MDMA.HCl was prepared by the most popular synthesis methods used in clandestine manufacture, i.e. safrole bromination, Leuckart method and reductive amination with various reducing agents: Al/Hg, NaBH(4), NaBH(3)CN. 3,4-Methylenedioxyphenyl-2-propanone (MDP-2-P), the starting material in Leuckart reaction and reductive amination, was prepared by two different synthesis methods, i.e. by isosafrole oxidation and MDP-2-nitropropene reduction. The extraction of impurities was performed under alkaline and neutral conditions. Impurity profiles were obtained using GC/MS. Each synthesis method is characterised by its own route specific impurities. The influence of pH on the extraction of synthesis markers from 3,4-methylenedioxymethamphetamine (MDMA) samples is discussed and comparison of the profiles of basic and neutral impurities is presented.  相似文献   

4.
The 4-methylthioamphetamine (4-MTA) is a sulphur-containing amphetamine-type stimulant (ATS), which appeared on the illicit market in Europe at the end of 90s. For the purpose of this study, several N-alkyl homologues of 4-MTA, including 4-methylthiomethamphetamine (4-MTMA), 4-methylthioethylamphetamine (4-MTEA), 4-methylthiodimethamphetamine (4-MTDMA), 4-methylthiopropylamphetamine (4-MTPA) and 4-methylthiobutylamphetamine (4-MTBA) were synthesized. The homologues were characterized by means of gas chromatography/mass spectrometry (GC–MS), infrared (IR) spectroscopy and the magnetic resonance spectroscopy (1H and 13C NMR). The gas chromatography and mass spectrometry properties of their acetyl, trifluoroacyl (TFA), pentafluoropropionyl (PFP) and heptafluorobutyryl (HFB) derivatives were also investigated and discussed.  相似文献   

5.
In our study 1-(3,4-methylenedioxyphenyl)-2-propanone (MDP-2-P or PMK) was prepared by two different routes, i.e. by oxidizing isosafrole in an acid medium and by 1-(3,4-methylenedioxyphenyl)-2-nitropropene reduction. The final product-MDP-2-P was subjected to GC/MS analysis. The intermediates and reaction by-products were identified and the 'route specific' impurities were established. The following impurities are the markers of the greatest importance: 1-(3,4-methylenedioxyphenyl)-1-propanone (compound 10, Table 2), 1-methoxy-1-(3,4-methylenedioxyphenyl)-2-propanone (compound 11, Table 2) and 2,2,4-trimethyl-5-(3,4-methylenedioxyphenyl)-[1,3]dioxolane (compound 13, Table 2) (the 'oxidising isosafrole route') and N-cyclohexylacetamide (compound 3, Table 1), 3-methyl-6,7-methylenedioxyisoquinoline-1,4-dione (compound 15, Table 1) (the 'MDP-2-nitropropene reduction route'). Subsequently, MDMA was prepared by reductive amination of MDP-2-P using NaBH4 as reducing agent (so-called 'cool method'). Impurities were extracted with n-heptane under alkaline conditions. The impurity profiles were obtained by means of GC/MS, some reaction by-products were identified by means of the EI mass spectra including low energy EI mass spectra and 'route specific' impurities were established. 4-Methyl-5-(3,4-methylenedioxyphenyl)-[1,3]dioxolan-2-one (compound 22, Table 2), N-methyl-2-methoxy-1-methyl-2-(3,4-methylenedioxyphenyl)-ethaneamine (compound 18, Table 2), 3-methyl-6,7-methylenedioxyisoquinoline-1,4-dione (compound 15, Table 1) and N-cyclohexyloacetamide (compound 3, Table 1) were found to be the synthesis markers of greatest importance.  相似文献   

6.
This article describes the isolation and structural elucidation of three compounds produced during the synthesis of methylamphetamine by the so‐called “Emde” procedure. The “Emde” procedure involves the preparation of the intermediate chloropseudoephedrine or chloroephedrine from ephedrine or pseudoephedrine, respectively. The intermediates are then reduced to methylamphetamine with hydrogen under pressure in the presence of a catalyst. The by‐product compounds were isolated from methylamphetamine by column chromatography and liquid chromatography (LC). Proton nuclear magnetic resonance spectroscopy (1H NMR), carbon nuclear magnetic resonance spectroscopy (13C NMR), and nanospray quadrupole‐time of flight‐mass spectrometry (Q‐TOF‐MS) were used to identify them as two stereoisomers of the compound N, N′‐dimethyl‐3,4‐diphenylhexane‐2,5‐diamine and N‐methyl‐1‐{4‐[2‐(methylamino)propyl]phenyl}‐1‐phenylpropan‐2‐amine.  相似文献   

7.
The aim of this study was to compare seized samples of 3,4-methylenedioxy-N-methylamphetamine (MDMA) pills, used to train law enforcement detection canine teams, to determine what differences exist in the chemical makeup and headspace odor and their effect on detectability. MDMA solutions were analyzed by liquid chromatography-mass spectrometry. Analysis of these samples showed a wide variance of MDMA (8-25%). Headspace SPME-GC/MS analysis showed that several compounds such as 3,4-methylenedioxyphenylacetone and 1-(3,4-methylenedioxyphenyl)-2-propanol are common among these MDMA samples regardless of starting compound and synthesis procedure. However, differences, such as the level of the various methylenedioxy starting compounds, were shown to affect the overall outcome of canine detection, indicating the need for more than one MDMA training aid. Combinations of compounds such as the primary odor piperonal in conjunction with a secondary compound such as MDP-2-OH or isosafrole are recommended to maximize detection of different illicit MDMA samples.  相似文献   

8.
A fast and simple method to detect some commonly abused illicit drugs, amphetamine, methamphetamine, 3,4-methylendioxy-amphetamine (MDA), 3,4-methylendioxy-methamphetamine (MDMA), 3,4-methylendioxy-N-ethylamphetamine (MDEA) and phencyclidine (PCP) in urine using solvent microextraction (SME) combined with gas chromatography (GC) analysis has been developed. The extraction is conducted by suspending a 2 μl drop of chloroform in a 2 ml urine sample. Following 8 min of extraction, the organic solvent is withdrawn into the syringe and injected into a GC with a pulsed discharge helium ionization detector (PDHID).The effects of different extraction solvents and times, pH and sample preparation were studied. The optimized method was capable of detecting drugs in urine at concentrations below Substance Abuse and Mental Health Services Administration (SAMHSA) established cut-off values for preliminary testing. Good linearity and reproducibility of extraction were obtained. The limits of detection were 0.5 μg/ml for amphetamine, 0.1 μg/ml for methamphetamine and MDA, 0.05 μg/ml for MDMA, 0.025 μg/ml for MDEA and 0.015 μg/ml for PCP. Relative standard deviation (R.S.D.) values ranged between 5 and 20% for the studied drugs.  相似文献   

9.
MDMA was prepared by five different synthesis routes, i.e. by dissolving metal reduction (Al/Hg), cyanoborohydride reduction (NaBH(3)CN), borohydride reduction in low temperature (NaBH(4)), Leuckart reaction and safrole bromination. MDP-2-P was prepared by two different synthesis methods, i.e. by isosafrole oxidation and MDP-2-nitropropene reduction. Each of the synthesis routes was repeated three times in order to establish variation in qualitative composition of route specific impurities between different batches. The analysis of impurities in MDP-2-nitropropene, MDP-2-P, bromosafrole and MDMA was performed with GC-MS. GC/MS was used also in the analysis of impurities in starting materials: safrole, isosafrole and piperonal. As a result of our study the way of determination of MDMA synthesis route determination based on qualitative composition of impurities is proposed.  相似文献   

10.
A rapid and sensitive method for the detection of six methylenedioxylatedphenethylamines, 3,4-methylenedioxymethamphetamine (MDMA); 3,4-methylenedioxyamphetamine; 3,4-methylenedioxyethylamphetamine; N-methyl-1-(3,4-methylenedioxyphenyl)-2-butamine; N-methyl-1-(3,4-methylenedioxyphenyl)-3-butamine; and 3,4-methylenedioxydimethylamphetamine, by thin-layer chromatography with fluorescence detection is proposed. These compounds form fluorophores on the developing plate following spraying with a reagent consisting of sodium hypochlorite, potassium hexacyanoferrate (III), and sodium hydroxide, and heating for 3 min at 100 degrees C. Blue fluorescent spots were observed under ultraviolet light in a wavelength range of 250-400 nm. The detection limits for MDMA and the above related compounds were 50 ng. The proposed method was effectively applied to the detection of MDMA in urine samples.  相似文献   

11.
A rapid and sensitive method using LC-MS/MS triple stage quadrupole for the determination of traces of amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”), 3,4-methylenedioxyethamphetamine (MDEA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in hair, blood and urine has been developed and validated. Chromatography was carried out on an Uptisphere ODB C18 5 μm, 2.1 mm × 150 mm column (Interchim, France) with a gradient of acetonitrile and formate 2 mM pH 3.0 buffer. Urine and blood were extracted with Toxitube A® (Varian, France). Segmented scalp hair was treated by incubation 15 min at 80 °C in NaOH 1 M before liquid–liquid extraction with hexane/ethyl acetate (2/1, v/v). The limits of quantification (LOQ) in blood and urine were at 0.1 ng/mL for all analytes. In hair, LOQ was <5 pg/mg for MA, MDMA, MDEA and MBDB, at 14.7 pg/mg for AP and 15.7 pg/mg for MDA. Calibration curves were linear in the range 0.1–50 ng/mL in blood and urine; in the range 5–500 pg/mg for MA, MDMA, MDEA and MBDB, and 20–500 pg/mg for AP and MDA. Inter-day precisions were <13% for all analytes in all matrices. Accuracy was <20% in blood and urine at 1 and 50 ng/mL and <10% in hair at 20 and 250 pg/mg. This method was applied to the determination of MDMA in a forensic case of single administration of ecstasy to a 16-year-old female without her knowledge during a party. She suffered from hyperactivity, sweating and agitation. A first sample of urine was collected a few hours after (T + 12 h) and tested positive to amphetamines by immunoassay by a clinical laboratory. Blood and urine were sampled for forensic purposes at day 8 (D + 8) and scalp hair at day 60 (D + 60). No MDMA was detected in blood, but urine and hair were tested positive, respectively at 0.42 ng/mL and at 22 pg/mg in hair only in the segment corresponding to the period of the offence, while no MDA was detectable. This method allows the detection of MDMA up to 8 days in urine after single intake.  相似文献   

12.
This work outlines the unequivocal identification of the "ecstasy" analog, 2-chloro-4,5-methylenedioxymethylamphetamine, using combined gas chromatography/mass spectroscopy (GC/MS) and proton magnetic resonance spectroscopy (1H-NMR). This compound was identified along with 3,4-methylenedioxymethylamphetamine (MDMA) in an illicit tablet seizure, which included 26 off-white tablets.  相似文献   

13.
Identification of 3,4-methylenedioxy-N-methylamphetamine (MDMA, ecstasy) in five cases of intoxication using nuclear magnetic resonance (NMR) spectroscopy of human urine is reported. A new water suppression technique PURGE (Presaturation Utilizing Relaxation Gradients and Echoes) was used. A calibration curve was obtained using spiked samples. The method gave a linear response (correlation coefficient of 0.992) over the range 0.01–1 mg/mL. Subsequently, quantitation of the amount of MDMA present in the samples was performed. The benefit and reliability of NMR investigations of human urine for cases of intoxication with MDMA are discussed.  相似文献   

14.
The prevalence and age distribution of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) in hair samples by gas chromatography/mass spectrometry (GC/MS) were studied. The recoveries obtained from hair were 97% and 99% for MDMA and MDA, respectively. The inter- and intra-assay precision and accuracy were determined. Out of 791 hair samples, 44 (5.6 %) contained MDMA and/or MDA. Out of these 44 subjects, urinalyses from 35 were negative for both MDMA and MDA, while only 9 were positive. We also evaluated concentrations of MDMA and MDA, and the metabolite-to-parent drug ratios. This study showed that the abuse of MDMA or MDA was found principally among young adults and male abusers. We found the epidemiology of ecstasy users in Korea between March 2002 and April 2003.  相似文献   

15.
A gas chromatography–mass spectrometry (GC–MS) method was developed and validated for the simultaneous qualification and quantification of methamphetamine (MA), amphetamine (AP), 3,4-methylenedioxy-N-methylamphetamine (MDMA), 3,4-methylenedioxy-N-amphetamine (MDA), ketamine (KET) and norketamine (NKT) in fingernails. Fingernail samples (20 mg) were washed with distilled water and methanol, digested with 1.0 M sodium hydroxide at 95 °C for 30 min, and then extracted with ethyl acetate. Extract solutions were evaporated to dryness, derivatized using heptafluorobutyric anhydride (HFBA) at 60 °C for 30 min, and analyzed by GC–MS. The linear ranges were 0.1–20.0 ng/mg for AP, MDMA and NKT, 0.2–20.0 ng/mg for MA and MDA, and 0.4–20.0 ng/mg for KET, with the coefficients of determination (r2  0.9989). The intra- and inter-day precisions were within 7.1% and 10.6%, respectively. The intra- and inter-day accuracies were ?10.9% to 0.8% and ?4.3% to 4.5%, respectively. The limits of detections (LODs) and the limits of quantifications (LOQs) for each analyte were lower than 0.094 ng/mg and 0.314 ng/mg, respectively. The recoveries were in the range of 72.3–94.9%. The average fingernail growth rates of two subjects for three years and six subjects for two months were 3.12 mm/month and 3.16 mm/month, respectively. The method proved to be suitable also for the simultaneous detection and quantification of MA, MDMA, KET and their metabolites in fingernails.  相似文献   

16.
This paper describes the structural elucidation of a compound produced during the synthesis of 3,4-methylenedioxymethylamphetamine (MDMA) via the reductive amination of 3,4-methylenedioxyphenyl-2-propanone (3,4-MDP-2-P) with methylamine and sodium cyanoborohydride. The compound was isolated from MDMA by column chromatography, proton and carbon nuclear magnetic resonance spectroscopy, LC/mass spectrometry, and total synthesis were used to identify the compound as N-cyanomethyl-N-methyl-1-(3',4'-methylenedioxyphenyl)-2-propylamine. This compound has been identified as a potential synthetic route marker for the reductive amination of 3,4-MDP-2-P with methylamine and sodium cyanoborohydride and as such it should prove valuable to forensic scientists engaged in profiling illicit drugs. Profiling MDMA can provide useful information to law enforcement agencies relating to synthetic route, precursor chemicals and reagents employed and may be used for comparative analyses of different drug seizures. This paper also describes the structural elucidation of the analogous methylamphetamine synthetic route marker compound, N-cyanomethyl-N-methyl-1-phenyl-2-propylamine, produced during the reductive amination of phenyl-2-propanone using methylamine and sodium cyanoborohydride.  相似文献   

17.
Five 44 gallon drums labeled as glycidyl methacrylate were seized by the Australian Customs Service and the Australian Federal Police at Port Botany, Sydney, Australia, in December 2004. Each drum contained a white, semisolid substance that was initially suspected to be 3,4-methylenedioxymethylamphetamine (MDMA). Gas chromatography-mass spectroscopy (GC/MS) analysis demonstrated that the material was neither glycidyl methacrylate nor MDMA. Because intelligence sources employed by federal agents indicated that this material was in some way connected to MDMA production, suspicion fell on the various MDMA precursor chemicals. Using a number of techniques including proton nuclear magnetic resonance spectroscopy ((1)H NMR), carbon nuclear magnetic resonance spectroscopy ((13)C NMR), GC/MS, infrared spectroscopy, and total synthesis, the unknown substance was eventually identified as methyl 3-[3',4'(methylenedioxy)phenyl]-2-methyl glycidate. The substance was also subjected to a published hydrolysis and decarboxylation procedure and gave a high yield of the MDMA precursor chemical, 3,4-methylenedioxyphenyl-2-propanone, thereby establishing this material as a "precursor to a precursor."  相似文献   

18.
Hair of young subjects (N = 36) suspected for drug abuse was analysed for morphine, codeine, heroin, 6-acetylmorphine, cocaine, methadone, amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), and 3,4-methylenedioxyethylamphetamine (MDEA). The analysis of morphine, codeine, heroin, 6-acetylmorphine, cocaine, and methadone in hair included incubation in methanol, solid-phase extraction, derivatisation by the mixture of propionic acid anhydride and pyridine, and gas chromatography/mass spectrometry (GC/MS). For amphetamine, methamphetamine, MDA, MDMA, and MDEA analysis, hair samples were incubated in 1M sodium hydroxide, extracted with ethyl acetate, derivatised with heptafluorobutyric acid anhydride (HFBA), and assayed by GC/MS. The methods were reproducible (R.S.D. = 5.0-16.1%), accurate (85.1-100.6%), and sensitive (LoD = 0.05-0.30ng/mg). The applied methods confirmed consumption of heroin in 18 subjects based on positive 6-acetylmorphine. Among these 18 heroin consumers, methadone was found in four, MDMA in two, and cocaine in two subjects. Cocaine only was present in two, methadone only in two, methamphetamine only in two, and MDMA only in seven of the 36 subjects. In two out of nine coloured and bleached hair samples, no drug was found. Despite the small number of subjects, this study has been able to indicate the trend in drug abuse among young people in Croatia.  相似文献   

19.
Recently, 3,4-methylenedioxyamphetamine derivatives have been encountered in the Italian illicit market, mainly in form of tablets. Among this class of substances small modifications of the molecule may result in a wide range of derivatives and analogs some of which are not yet listed as controlled substances in the Italian schedules. Due to the structural similarity some of these molecules have a gas chromatographic behavior and mass spectra that only slightly differ. In the present work, an analytical strategy is proposed to achieve the identification of analogs within this class of molecules. In seized material sent by the Court of Law of Rome to our laboratories a number of tablets engraved with different symbols (e.g., `Dollar', `Fido Dido' and `Bomb') were submitted to analysis in order to establish whether they contained drugs of abuse. The analytical techniques employed for this purpose were UV spectrophotometry and thin-layer chromatography which provided information suggesting that the tablets contained a methylenedioxyamphetamine. Gas chromatography with flame ionization detection indicated that the main ingredient differed from the molecules of the same class already known. Finally, capillary gas chromatographic–mass spectrometric analysis of the native molecules and their pentafluoropropionic acid derivatives, performed with both, electron impact and chemical ionization, allowed the identification, in each tablet, of three molecules: the N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MDP-2-MB, MBDB), the 1-(3,4-methylenedioxyphenyl)-2-butanamine (MDP-2-B) and the N,N-dimethyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MDP-2-MMB).  相似文献   

20.
Twelve different sets of confiscated ecstasy samples were analysed applying both near infrared spectroscopy in reflectance mode (1100-2500 nm) and high-performance liquid chromatography (HPLC). The sets showed a large variance in composition. A calibration data set was generated based on the theory of factorial designs. It contained 221 N-methyl-3,4-methylenedioxyamphetamine (MDMA) samples, 167 N-ethyl-3,4-methylenedioxyamphetamine (MDE), 111 amphetamine and 106 samples without a controlled substance, which will be called placebo samples thereafter. From this data set, PLS-1 models were calculated and were successfully applied for validation of various external laboratory test sets. The transferability of these results to confiscated tablets is demonstrated here. It is shown that differentiation into placebo, amphetamine and ecstasy samples is possible. Analysis of intact tablets is practicable. However, more reliable results are obtained from pulverised samples. This is due to ill-defined production procedures. The use of mathematically pretreated spectra improves the prediction quality of all the PLS-1 models studied. It is possible to improve discrimination between MDE and MDMA with the help of a second model based on raw spectra. Alternative strategies are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号