首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The precision and accuracy of an Alcolmeter Pocket Model breath alcohol instrument have been investigated in experiments with human subjects under controlled conditions. The instrument response was zero in all tests with breath samples from alcohol-free subjects. The standard deviations of ethanol determinations in breath were ±0.0722 mg/ml during ethanol absorption and ±0.0416 mg/ml during ethanol elimination. The standard deviation during the elimination phase increased with ethanol concentration in the sample, being ±0.0416 mg/ml on average at a mean concentration of 0.420 mg/ml, corresponding to a coefficient of variation of 9.9%.The blood alcohol estimates using the Alcolmeter were somewhat too high during active absorption of ethanol, and too low during elimination, when a constant blood-breath alcohol ratio of 2100:1 was used to calibrate the instrument. During the elimination phase of ethanol kinetics and at a mean blood alcohol concentration of 0.50 mg/ml, the mean Alcolmeter result was 0.456 ± 0.169 mg/ml with 95% confidence, i.e. varying between 0.287 and 0.625 mg/ml 95 times out of 100 tests at this critical blood alcohol level.  相似文献   

2.
Although proficiency test programs have long been used in both clinical and forensic laboratories, they have not found uniform application in forensic breath alcohol programs. An initial effort to develop a proficiency test program appropriate to forensic breath alcohol analysis is described herein. A total of 11 jurisdictions participated in which 27 modern instruments were evaluated. Five wet bath simulator solutions with ethanol vapor concentrations ranging from 0.0254 to 0.2659 g/210 L were sent to participating programs, instructing them to perform n = 10 measurements on each solution using the same instrument. Four of the solutions contained ethanol only and one contained ethanol mixed with acetone. The systematic errors for all instruments ranged from -11.3% to +11.4% while the coefficient of variations ranged from zero to 6.1%. A components-of-variance analysis revealed at least 79% of the total variance as being due to the between-instrument component for all concentrations. Improving proficiency test program development should consider: (1) clear protocol instructions, (2) frequency of proficiency testing, (3) use lower concentrations for determining limits-of-detection and -quantitation, etc. Despite the lack of a biological component, proficiency test participation should enhance the credibility of forensic breath test programs.  相似文献   

3.
Anecdotal reports suggest that high environmental or occupational exposures to the fuel oxygenate methyl tert-butyl ether (MTBE) may result in breath concentrations that are sufficiently elevated to cause a false positive on commercial breath-alcohol analyzers. We evaluated this possibility in vitro by establishing a response curve for simulated breath containing MTBE in ethanol. Two types of breath-alcohol analyzers were evaluated. One analyzer's principle of operation involves in situ wet chemistry (oxidation of ethanol in a potassium dichromate solution) and absorption of visible light. The second instrument uses a combination of infrared absorption and an electrochemical sensor. Both types of instruments are currently used, although the former method represents older technology while the latter method represents newer technology.The percent blood alcohol response curve was evaluated over a breath concentration range thought to be relevant to high-level environmental or occupational exposure (0-361 microg/l). Results indicate that MTBE positively biases the response of the older technology Breathalyzer when evaluated as a single constituent or in combination with ethanol. We conclude that a false positive is possible on this instrument if the MTBE exposure is very high, recent with respect to testing, and occurs in combination with ethanol consumption. The interference can be identified on the older technology instrument by a time dependent post-reading increase in the instrument response that does not occur for ethanol alone. In contrast, the newer technology instrument using infrared and electrochemical detectors did not respond to MTBE at lower levels (0-36 microg/l), and at higher levels (>72 microg/l) the instrument indicated an "interference" or "error". For this instrument, a false positive does not occur even at high MTBE levels in the presence of ethanol.  相似文献   

4.
The evaluation of breath alcohol instruments for forensic suitability generally includes the assessment of accuracy, precision, linearity, blood/breath comparisons, etc. Although relevant and important, these methods fail to evaluate other important analytical and biological components related to measurement variability. An experimental design comparing different instruments measuring replicate breath samples from several subjects is presented here. Three volunteers provided n = 10 breath samples into each of six different instruments within an 18 minute time period. Two-way analysis of variance was employed which quantified the between-instrument effect and the subject/instrument interaction. Variance contributions were also determined for the analytical and biological components. Significant between-instrument and subject/instrument interaction were observed. The biological component of total variance ranged from 56% to 98% among all subject instrument combinations. Such a design can help quantify the influence of and optimize breath sampling parameters that will reduce total measurement variability and enhance overall forensic confidence.  相似文献   

5.
A new breath alcohol (ethanol) analyzer has been developed, which allows free exhalation, standardizes measured exhaled alcohol concentration to fully saturated water vapor at a body temperature of 37 degrees C (43.95 mg/L) and includes a built-in self-calibration system. We evaluated the performance of this instrument by comparing standardized alcohol concentration in freely expired breath (BrAC) with arterial (ABAC) and venous (VBAC) blood alcohol concentrations in fifteen healthy volunteers who drank 0.6 g of alcohol per kg body weight. The precision (coefficient of variation, CV) of the analyzer based on in vivo duplicate measurements in all phases of the alcohol metabolism was 1.7%. The ABAC/BrAC ratio was 2251+/-46 (mean+/-S.D.) in the post-absorptive phase and the mean bias between ABAC and BrAC x 2251 was 0.0035 g/L with 95% limits of agreement of 0.033 and -0.026. The ABAC and BrAC x 2251 were highly correlated (r=0.998, p<0.001) and the regression relationship was ABAC = 0.00045 + 1.0069 x (BrAC x 2251) indicating excellent agreement and no fixed or proportional bias. In the absorption phase, ABAC exceeded BrAC x 2251 by at most 0.04+/-0.03 g/L when tests were made at 10 min post-dosing (p<0.05). The VBAC/BrAC ratio never stabilized and varied continuously between 1834 and 3259. There was a proportional bias between VBAC and BrAC x 2251 (ABAC) in the post-absorptive phase (p<0.001). The pharmacokinetic analysis of the elimination rates of alcohol and times to zero BAC confirmed that BrAC x 2251 and ABAC agreed very well with each other, but not with VBAC (p<0.001). We conclude that this new breath analyzer using free exhalation has a high precision for in vivo testing. The BrAC reflects very accurately ABAC in the post-absorption phase and substantially well in the absorption phase and thereby reflects the concentration of alcohol reaching the brain. Our findings highlight the magnitude of arterio-venous differences in alcohol concentration and support the use of breath alcohol analyzers as a stand-alone test for medical and legal purposes.  相似文献   

6.
Concentration-time profiles of ethanol were determined for venous whole blood and end-expired breath during a controlled drinking experiment in which healthy men (n=9) and women (n=9) drank 0.40-0.65 g ethanol per kg body weight in 20-30 min. Specimens of blood and breath were obtained for analysis of ethanol starting at 50-60 min post-dosing and then every 30-60 min for 3-6 h. This protocol furnished 130 blood-breath pairs for statistical evaluation. Blood-ethanol concentration (BAC, mg/g) was determined by headspace gas chromatography and breath-ethanol concentration (BrAC, mg/2l) was determined with a quantitative infrared analyzer (Intoxilyzer 5000S), which is the instrument currently used in Sweden for legal purposes. In 18 instances the Intoxilyzer 5000S gave readings of 0.00 mg/2l whereas the actual BAC was 0.08 mg/g on average (range 0.04-0.15 mg/g). The remaining 112 blood- and breath-alcohol measurements were highly correlated (r=0.97) and the regression relationship was BAC=0.10+0.91BrAC and the residual standard deviation (S.D.) was 0.042 mg/g (8.4%). The slope (0.91+/-0.0217) differed significantly from unity being 9% low and the intercept (0.10+/-0.0101) deviated from zero (t=10.2, P<0.001), indicating the presence of both proportional and constant bias, respectively. The mean bias (BAC - BrAC) was 0.068 mg/g and the 95% limits of agreement were -0.021 and 0.156 mg/g. The average BAC/BrAC ratio was 2448+/-540 (+/-S.D.) with a median of 2351 and 2.5th and 97.5th percentiles of 1836 and 4082. We found no significant gender-related differences in BAC/BrAC ratios, being 2553+/-576 for men and 2417+/-494 for women (t=1.34, P>0.05). The mean rate of ethanol disappearance from blood was 0.157+/-0.021 mg/(g per hour), which was very close to the elimination rate from breath of 0.161+/-0.021 mg/(2l per hour) (P>0.05). Breath-test results obtained with Intoxilyzer 5000S (mg/2l) were generally less than the coexisting concentrations of ethanol in venous blood (mg/g), which gives an advantage to the suspect who provides breath compared with blood in cases close to a threshold alcohol limit.  相似文献   

7.
A breath-alcohol screening device, Alcolmeter pocket model, was evaluated in a controlled field trial with policeman operating the instruments. The results of tests made with subjects before they drank alcohol were always zero. The standard deviation (S.D.) of breath alcohol determinations increased with increase in the concentration of alcohol in the sample, being 0.036 mg/ml at a mean blood-ethanol concentration of 0.53 mg/ml. The S.D. varied among subjects tested (from 0.022 to 0.053 mg/ml) as well as among the instruments used (from 0.023 to 0.054 mg/ml). The breath test results were on average less than the actual blood-ethanol concentrations when a 2100: 1 blood/breath ratio was used to calibrate the Alcolmeter device. Blood ethanol (x) and Alcolmeter readings (y) were highly correlated (r = 0.95 +/- 0.018) and the regression equation was y = -0.017 + 0.95x. At a mean blood-ethanol concentration of 0.50 mg/ml, the Alcolmeter instrument will indicate 0.46 mg/ml on average. The standard error estimate was 0.085 mg/ml, being 17% of the mean Alcolmeter reading and this corresponds to 95% confidence limits of +/- 0.17 mg/ml. The results of this study show that Alcolmeter pocket-model is a useful device for breath-alcohol screening purposes at a blood-alcohol level of 0.50 mg/ml. A blood/breath ratio of 2300 should be used to calibrate the Alcolmeter device.  相似文献   

8.
Delayed ethanol analysis was performed on breath specimens collected with commercial silica gel tubes using multiple Breathalyzer instruments. Eleven hundred and nine results were obtained from an ethanol testing program over a five-year period. Only 2.5% of the specimens had apparent collection errors. For the valid specimens, the most frequent result was 0.11 g/210 L and the mean result was 0.14 g/210 L. For 642 specimens, delayed results were compared with direct results. Direct results were greater than delayed results for 55%, less than for 27%, and equal to for 18% of the pairs. When fixed tolerance limits of +/- 0.03 were used, 81% of the direct results were confirmed. The confirmation percentage was best in the critical range of direct results, 0.05 to 0.15 g/210 L. The collection tubes showed no substantial variability in retaining ethanol during storage and releasing ethanol for analysis.  相似文献   

9.
The study aim was to evaluate the feasibility of a Fourier-transformed infrared (FT-IR) analyzer for out-of-laboratory use by screening the exhalations of inebriated individuals, and to determine analysis quality using common breath components and solvents. Each of the 35 inebriated participants gave an acceptable sample. Because of the metabolism of 2-propanol, the subjects exhaled high concentrations of acetone in addition to ethanol. Other volatile ingredients of technical ethanol products (methyl ethyl ketone, methyl isobutyl ketone, and 2-propanol) were also detected. The lower limits of quantification for the analyzed components ranged from 1.7 to 12 microg/L in simulated breath samples. The bias was +/-2% for ethanol and -11% for methanol. Within-day and between-day coefficients of variation were <1% for ethanol and <4% for methanol. The bias of ethanol and methanol analyses due to coexisting solvents ranged from -0.8 to +2.2% and from -5.6 to +2.9%, respectively. The FT-IR method proved suitable for use outside the laboratory and fulfilled the quality criteria for analysis of solvents in breath.  相似文献   

10.
The purpose of this work was to evaluate if it was possible to measure the alcohol concentration in breath by a multisensor array, i.e. an electronic nose. The most important aspects were to clarify technical advantages and disadvantages and if the technique is at all suitable for forensic breath alcohol analysis. Even though the system set-up was far from optimal it is clear that it was possible to quantify breath alcohol with a best-case root mean square error = 16.8 mol ppm ethanol (= 0.037 mg/l). However, the method needs significant development especially of the sensor devices. The sensor array was composed of ten metal oxide silicon field effect transistors (MOSFET) with various catalytic gates and one infrared-based CO2 sensor. The system was evaluated by monitoring the breath ethanol concentration of five test persons after intake of alcohol. Gas chromatography was used in parallel to measure the actual breath alcohol concentration. Different data evaluation techniques applied were projection to latent structure (PLS) and artificial neural networks (ANN).  相似文献   

11.
This paper reports results from a field trial with a breath-alcohol screening device--Alcolmeter pocket model. Breath tests were made with drivers apprehended during routine controls (road-blocks), for traffic violations and those involved in traffic accidents. Of 908 roadside breath tests made with chemical reagent tubes, 343 showed zero alcohol (no colour change) and these results were confirmed by Alcolmeter. Alcohol was detected in 191 tests but the level was judged as being below the legal limit of 0.50 mg/ml. The Alcolmeter results, however, ranged from 0 to 1.22 mg/ml (mean 0.21 mg/ml) and 15 individuals (7.8%) were above the legal limit. There were 373 positive chemical tube breath screening tests whereas in 5 cases (1.3%) Alcolmeter indicated a blood-alcohol level below 0.50 mg/ml. Duplicate determinations with the Alcolmeter device were highly correlated r = 0.93 +/- 0.02 (+/- S.E.), P less than 0.001. The standard deviation of a single breath-alcohol analysis under field conditions was +/- 0.10 mg/ml which corresponds to a coefficient of variation of 10%. The time interval between positive roadside breath test and blood-sampling ranged from 5 to 220 min (median 62 min). The results were therefore adjusted by 0.15 mg/ml per hour to compensate for ethanol metabolised between the time of sampling blood and breath. The corrected blood and breath values were well correlated r = 0.84 +/- 0.03, P less than 0.001 but the predictive power of the regression relationship was poor. The regression equation was y = 0.27 +/- 0.65x and the standard error estimate was +/- 0.21 mg/ml at the mean concentration of ethanol of 1.0 mg/ml.  相似文献   

12.
A novel breath-alcohol analyzer based on the standardization of the breath alcohol concentration (BrAC) to the alveolar-air water vapour concentration has been developed and evaluated. The present study compares results with this particular breath analyzer with arterial blood alcohol concentrations (ABAC), the most relevant quantitative measure of brain alcohol exposure. The precision of analysis of alcohol in arterial blood and breath were determined as well as the agreement between ABAC and BrAC over time post-dosing. Twelve healthy volunteers were administered 0.6g alcohol/kg bodyweight via an orogastric tube. Duplicate breath and arterial blood samples were obtained simultaneously during the absorption, distribution and elimination phases of the alcohol metabolism with particular emphasis on the absorption phase. The precision of the breath analyzer was similar to the determination of blood alcohol concentration by headspace gas chromatography (CV 2.40 vs. 2.38%, p=0.43). The ABAC/BrAC ratio stabilized 30min post-dosing (2089±99; mean±SD). Before this the BrAC tended to underestimate the coexisting ABAC. In conclusion, breath alcohol analysis utilizing standardization of alcohol to water vapour was as precise as blood alcohol analysis, the present "gold standard" method. The BrAC reliably predicted the coexisting ABAC from 30min onwards after the intake of alcohol.  相似文献   

13.
The Dr?ger 7110 MK III FIN Evidential breath analyzer is classified as a quantitative analyzer capable to provide sufficient evidence for establishing legal intoxication. The purpose of this study was to evaluate ethanol specificity of this instrument in the presence of other solvents. Effects of eight possible interfering compounds on ethanol analysis were determined in a procedure simulating a human breathing. Most of the compounds studied had either a negligible effect on ethanol analysis (acetone, methyl ethyl ketone, and methyl isobutyl ketone) or were detected in very low concentrations before influencing ethanol readings (methanol, ethyl acetate, and diethyl ether). However, 1-propanol and 2-propanol increased the ethanol readings significantly. Thus, Dr?ger ethanol readings should be interpreted carefully in the presence of propanol.  相似文献   

14.
An Alcolmeter Pocket Model breath alcohol device, based on an electrochemical (fuel cell) oxidation principle for ethanol analysis, has been evaluated under in vitro conditions. The result of a test is displayed on an analogue meter within 20 – 30 seconds after sampling; replicate tests may be made within 3 – 5 minutes. The electrochemical detector used was found to respond to acetaldehyde, methanol, isopropanol and n-propanol vapours besides ethanol, but it was insensitive to acetone vapour. The Alcolmeter response with a 0 – 2.0 mg/ml scale was linearly related to ethanol vapour concentration up to 1.0 mg/ml blood alcohol equivalent concentration; above this level the response was curvilinear, the Alcolmeter reading being too low. The standard deviation of an ethanol vapour determination in vitro was ±0.0175 mg/ml at a mean concentration of 0.902 mg/ml. The accuracy of the device expressed as percent recovery at 0.50, 1.0 and 1.4 mg/ml blood alcohol concentrations was 96.8%, 98.3%, and 88.3%, respectively. When the Alcolmeter was calibrated at 0.50 mg/ml and used occasionally each day over an 18-day period, the drop in initial calibration was 0.01 mg/ml per week.  相似文献   

15.
The stability of ethanol in antemortem blood stored under various conditions has been widely studied. Antemortem blood samples stored at refrigerated temperature, at room temperature, and at elevated temperatures tend to decrease in ethanol concentration with storage. It appears that the stability of ethanol in blood exposed to temperatures greater than 38°C has not been evaluated. The case presented here involves comparison of breath test results with subsequent analysis of blood drawn at the time of breath testing. However, the blood tubes were in a refrigerator fire followed by refrigerated storage for 5 months prior to analysis by headspace gas chromatography. The subject’s breath was tested twice using an Intoxilyzer 8000. The subject’s blood was tested in duplicate using an Agilent headspace gas chromatograph. The measured breath ethanol concentration was 0.103 g/210 L and 0.092 g/210 L. The measured blood ethanol concentration was 0.0932 g/dL for both samples analyzed. Although the mean blood test result was slightly lower than the mean breath test result, the mean breath test result was within the estimated uncertainty of the mean blood test result. Even under the extreme conditions of the blood kit being in a refrigerator fire, the measured blood ethanol content agreed well with the paired breath ethanol test.  相似文献   

16.
Sex determination is a key analysis that forensic anthropologists perform in order to construct a biological profile of human remains. The techniques used in forensic investigations must meet the Mohan or Daubert criteria, for admissibility in a court of law. In this study, the precision and accuracy of 21 morphological characteristics of the skull were tested on a modern sample of 50 adult crania of European White ancestry. The following craniofacial features are identified as high-quality traits, defined by intraobserver error or=80%: mastoid size, supraorbital ridge size, general size and architecture, rugosity of the zygomatic extension, size and shape of the nasal aperture, and gonial angle. Ninety-six percent accuracy and 92% precision were achieved using 20 traits in combination. Fisher's exact probability tests revealed no significant differences (p=0.05) in the levels of precision or accuracy between age categories. Sex-related bias in accuracy was found for the following cranial features: ramus symphysis (p=0.009), zygomatic extension (p=0.0016), and occipital markings (p=0.0013). These traits demonstrated a greater tendency to be scored male than female.  相似文献   

17.
The State of Michigan uses the Datamaster as an evidential breath testing device. The newest version, the DMT, will replace current instruments in the field as they are retired from service. The Michigan State Police conducted comparison studies to test the analytical properties of the new instrument and to evaluate its response to conditions commonly cited in court defenses. The effects of mouth alcohol, objects in the mouth, and radiofrequency interference on paired samples from drinking subjects were assessed on the DMT. The effects of sample duration and chemical interferents were assessed on both instruments, using drinking subjects and wet-bath simulators, respectively. Our testing shows that Datamaster and DMT results are essentially identical; the DMT gave accurate readings as compared with measurements made using simulators containing standard ethanol solutions and that the DMT did not give falsely elevated breath alcohol results from any of the influences tested.  相似文献   

18.
Duplicate breath alcohol testing from each individual provides confidence in the results when reasonable agreement (i.e. +/- 0.02 g/210 L) is achieved. For this reason many jurisdictions require duplicate testing. The State of Washington has recently implemented an infrared breath testing program and now requires two breath samples from each individual. Statistical analysis of 1847 duplicate breath tests is presented. Three variables are analyzed: first alcohol result (ALC1), the absolute difference between the two breath samples (DIFFA), and the signed difference between the two breath samples (DIFFS). The first breath alcohol result ranged from 0.021 to 0.338 g/210 L with a mean of 0.157 g/210 L. The absolute difference ranged from 0.00 to 0.05 g/210 L. The signed difference ranged from -0.05 g/210 L to 0.05 g/210 L. The absolute difference was regressed upon the first alcohol result and resulted in poor linear correlation of r = 0.212. Duplicate breath test differences do not appear to be a function of subject's alcohol level, but rather of sample provision.  相似文献   

19.
This study was undertaken to determine if the application of alcohol‐based hand sanitizers (ABHSs) to the hands of a breath test operator will affect the results obtained on evidential breath alcohol instruments (EBTs). This study obtained breath samples on three different EBTs immediately after application of either gel or foam ABHS to the operator's hands. A small, but significant, number of initial analyses (13 of 130, 10%) resulted in positive breath alcohol concentrations, while 41 samples (31.5%) resulted in a status code. These status codes were caused by ethanol vapors either in the room air or their inhalation by the subject, thereby causing a mouth alcohol effect. Replicate subject samples did not yield any consecutive positive numeric results. As ABHS application can cause a transitory mouth alcohol effect via inhalation of ABHS vapors, EBT operators should forego the use of ABHS in the 15 min preceding subject testing.  相似文献   

20.
Usefulness of portable, handheld breath analysers equipped with electrochemical sensor was assessed. Breath- and blood-alcohol concentrations in drunken drivers were taken from 370 expert opinions elaborated at the Institute of Forensic Research between January 1st 2002 and February 28th 2007. The results of second and subsequent measurements were re-calculated using mean elimination rates. The readings of portable instruments were in very good agreement with the results of confirmatory analyses performed by stationary devices (r=0.978, p<0.001, y=0.969x-0.0002). The correlation with the results of blood analysis was weaker (r=0.940, p<0.001, y=1.722x+0.214), but comparable with the correlation between the readings of stationary devices and the results of blood analyses (r=0.936, p<0.001, y=1.790x+0.091). The readings of portable and stationary breath analysers were also compared by the Bland-Altman plots. The differences in results were independent of alcohol concentration (absolute difference (mg/L): r=0.054, p>0.1, y=0.011x+0.013; relative difference (%): r=0.020, p>0.1, y=0.90x+2.36).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号