首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suspects in shooting investigations in Chicago are routinely transported in department vehicles and detained in department facilities prior to gunshot residue (GSR) evidence collection. The GSR test results are used to associate the suspect with primary exposure to GSR. The potential for these vehicles and facilities being sources of secondary GSR contamination needed to be determined. A total of 201 samples were collected from randomly selected vehicles and detention facilities. The sampling collected trace materials from surfaces that suspects' hands may contact during the arrest process. These samples were examined for the presence of GSR particles using scanning electron microscopy. Upon completion of the automated analysis, those particles that met an initial GSR screening criterion were relocated and reanalyzed. The locations where GSR particles were recovered allowed us to make recommendations to the Chicago Police Department with regard to transporting and detaining these suspects. The low number of GSR particles recovered suggests that the potential for secondary contamination, although present, is relatively low.  相似文献   

2.
The discharging of a gun results in the formation of extremely small particles known as gunshot residues (GSR). These may be deposited on the skin and clothing of the shooter, on other persons present, and on nearby items or surfaces. Several factors and their complex interactions affect the number of detectable GSR particles, which can deeply influence the conclusions drawn from likelihood ratios or posterior probabilities for prosecution hypotheses of interest. We present Bayesian network models for casework examples and demonstrate that probabilistic quantification of GSR evidence can be very sensitive to the assumptions concerning the model structure, prior probabilities, and the likelihood components. This finding has considerable implications for the use of statistical quantification of GSR evidence in the legal process.  相似文献   

3.
A review of the scientific papers published on inorganic gunshot residue (GSR) analysis permits to study how the particle analysis has shown its capability in detection and identification of gunshot residue. The scanning electron microscope can be the most powerful tool for forensic scientists to determine the proximity to a discharging firearm and/or the contact with a surface exposed to GSR. Particle analysis can identify individual gunshot residue particles through both morphological and elemental characteristics. When particles are detected on the collected sample, the analytical results can be interpreted following rules of a formal general interpretative system, to determine whether they come from the explosion of a primer or from other possible sources. The particles on the sample are compared with an abstract idea of "unique" GSR particle produced by the sole source of the explosion of a primer. "Uniqueness" is not the only problem related to GSR detection and identification for a forensic scientist. With "not-unique" particles interpretation of results is extremely important. The evidential strength of "not-unique" particles can increase with a more fruitful interpretative framework based on Bayes rule. For the assessment of the value of a GSR in linking a suspect and a crime, it is important to compare two hypothesis: the first can be that of the evidence if the suspect has been shooting in a specific situation, the second that of the evidence if the suspect was not involved in this shooting. This case specific or case-by-case approach is closer to what the court is interested in. The authors consider that a "case-by-case" approach should be followed whenever possible. Research of models and data such as those developed in other trace evidence material (fibres, glass, etc.) using a Bayesian approach is suggested in the interpretation of GSR.  相似文献   

4.
5.
Law enforcement agencies routinely sample for gunshot residue (GSR) by bulk techniques and often submit swabs taken from other surfaces besides the hands of the suspect shooter. This study aims to establish the prevalence of antimony, barium, and lead on normally handled automobile surfaces by graphite furnace atomic absorption analysis. No positives were determined on 50 sampled automobile surfaces above cutoff (positive) from background levels. Transfers of GSR particles from shooter hands to automobile surfaces were found to potentially allow for positive GSR determinations, but such transfers seem to be dependent on the shooting conditions and length of GSR exposure. We determined that our bulk analysis method yields an overall 87.94 ± 5.52% extraction efficiency from cotton swabs, while the LOQ determinations strengthening the fact that bulk analysis methods are valid and valuable tools for GSR investigations.  相似文献   

6.
Simple equipment for the sampling of gunshot residue particles from clothing, inside of bags, pockets, etc, is described. Collection was achieved by vacuuming through a double filtration system constructed from a Nucleopore aerosol holder connected to an ordinary vacuum cleaner. The collected particles were examined by scanning electron microscopy. Good results were observed in functional tests of this equipment and the method has been introduced into casework in our laboratory. Various experiments on possible contamination of clothing by GSR particles were performed. The usefulness of clothing as evidence material in searching for GSR particles is discussed.  相似文献   

7.
The main disadvantage to gunshot residue (GSR) particle analysis utilizing scanning electron microscope/energy dispersive X-ray (SEM/EDX) instrumentation has been the excessive operator time required for search and identification. This study uses an automated particle search and characterization program for unattended GSR search and identification. This system allows for automatic matrix search, particle sizing, chemical typing, and spectral aquisition with subsequent storage of data to disk for later operator review and verification. This work describes various aspects of the program, determines appropriate parameters adequate for both unique and characteristic GSR particle identification, and evaluates the reliability of data obtained. Samples are collected via the tape lift method from test-firings of .38, .32, .25, and .22 caliber handguns at time after firing intervals of 0 to 6 h. Unique GSR particles are consistently and correctly identified by this method on tape lift samples taken up to 4 h after firing. False positive results of unique GSR particles are not encountered on control handblank samples. This technique appears to provide the forensic science community with an operator-free method of reliable GSR particle search and an improved analyst-time-per-case ratio.  相似文献   

8.
In this study, chemical composition and morphology of gunshot residue (GSR) of 9 × 19 mm Parabellum‐type MKE (Turkey)‐brand ammunition were analyzed by scanning electron microscope and energy dispersive X‐ray spectrometer. GSR samples were collected by “swab” technique from the shooter's right hand immediately after shooting. According to general principles of thermodynamics, it is likely that the structures will have a more regular (homogeneous) spherical form to minimize their surface area due to very high temperatures and pressures that occur during explosion. Studied samples were collected under the same conditions with the same original ammunition, from the same firearm and a single shooter. This is because many other variables may affect size, structure, and composition in addition to the concentrations of elements of the structure. Results indicated that the chemical compositions are effective in the formation of GSR morphological structures.  相似文献   

9.
The elemental objects of the research study are: determination of time periods corresponding to gunshot residue particles (GSR) deposition after the shot from selected pistols and a revolver, and evaluation of the deposited particles number. For several shooting experiments were used a pistol CZ model 85, caliber 9 mm Luger with common ammunition 9 mm Luger FMJ Sellier & Bellot, a pistol CZ model 70, caliber 7.65 mm Browning (32 ACP) with common 7.65 mm Browning FMJ Sellier & Bellot ammunition and a revolver S&W Modell 60, barell length 2-1/8', cal. .38 Special with common Sellier&Bellot (FMJ) ammunition. The results of the study have indicated the behavior of GSR particles deposited after a single discharge. The overall time interval of GSR particles deposition and the number of deposited particles with the above mentioned arms and ammunition were established. The results can potentially be used for clarifying the situation at crime scenes and for subsequent interpretation of GSR evidential value in caseworks.  相似文献   

10.
Abstract: The collection efficiency of two widely used gunshot residue (GSR) collection techniques—carbon‐coated adhesive stubs and alcohol swabs—has been compared by counting the number of characteristic GSR particles collected from the firing hand of a shooter after firing one round. Samples were analyzed with both scanning electron microscopy and energy dispersive X‐rays by an experienced GSR analyst, and the number of particles on each sample containing Pb, Ba, and Sb counted. The adhesive stubs showed a greater collection efficiency as all 24 samples gave positive results for GSR particles whereas the swabs gave only positive results for half of the 24 samples. Results showed a statistically significant collection efficiency for the stub collection method and likely reasons for this are considered.  相似文献   

11.
Only limited data currently exists on the inadvertent transfer of gunshot residue (GSR), or GSR-like particles through contact with public places. In this study, an assessment occurrence of GSR in public environments in England, UK was undertaken. Utilizing a stubbing sampling technique over 260 samples were collected from areas accessible to the public, including buses, trains, taxis, and train stations. Stub analysis was performed by Scanning Electron Microscopy with Energy Dispersive X-ray Analysis (SEM-EDX). The results showed no characteristic GSR particles were detected on any of the 262 samples taken. From these samples, a total of four indicative/consistent particles were identified on one train seat (2× BaAl, 2× PbSb). Although geographical location and firearm association is likely to influence GSR occurrence, the data suggests that the potential for inadvertent GSR transfer through contact with public transport and associated communal areas is insignificant. Further research assessing environmental background levels of GSR in additional geographical locations is critical in an evaluation of the potential for GSR transfer from the environment.  相似文献   

12.
Abstract: Pork ribs with intact muscle tissue were used in an experimental attempt to identify bullet wipe on bone at distances from 1 to 6 feet with 0.45 caliber, full metal jacket ammunition. This resulted in the unexpected finding of primer‐derived gunshot residue (GSR) deep within the wound tract. Of significance is the fact that the GSR was deposited on the bone, under the periosteum, after the bullet passed through a Ziploc® bag and c. 1 inch of muscle tissue. It is also important to note that the GSR persisted on the bone after the periosteum was forcibly removed. The presence of primer‐derived GSR on bone provides the potential to differentiate gunshot trauma from blunt trauma when the bone presents an atypical gunshot wound. In this study, the presence of gunshot primer residue at a distance of 6 feet demonstrates the potential for establishing maximum gun‐to‐target distance for remote shootings.  相似文献   

13.
Grouping of ammunition types by means of frequencies of occurrence of GSR   总被引:1,自引:0,他引:1  
An attempt was made to build a classification scheme for gunshot residues (GSR) samples originating from four types of ammunition, collected from shooters' hands immediately after shooting. The secured material was examined with the use of SEM-EDX method in the automatic manner. The obtained results were expressed as frequencies of occurrence of particles assigned to various chemical classes. In order to establish the most discriminative of these features the Mann-Whitney test was performed. Cluster analysis was performed for grouping the analysed samples according to their origin, i.e. the type of ammunition. It has been found that samples of GSR originating from Browning 7.65 mm and Luger 9 mm ammunition can be fairly easy differentiated from the remaining samples, whereas samples of GSR originating from of Makarov 9 mm and these of Tokarev 7.62 mm could not be differentiated using frequencies of occurrence of particles in the selected chemical classes.  相似文献   

14.
We devised a simple and rapid method for detection of gunshot residue (GSR) particles, using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX) analysis. Experiments were done on samples containing GSR particles obtained from hands, hair, face, and clothing, using double-sided adhesive coated aluminum stubs (tape-lift method). SEM/WDX analyses for GSR were carried out in three steps: the first step was map analysis for barium (Ba) to search for GSR particles from lead styphnate primed ammunition, or tin (Sn) to search for GSR particles from mercury fulminate primed ammunition. The second step was determination of the location of GSR particles by X-ray imaging of Ba or Sn at a magnification of x 1000-2000 in the SEM, using data of map analysis, and the third step was identification of GSR particles, using WDX spectrometers. Analysis of samples from each primer of a stub took about 3 h. Practical applications were shown for utility of this method.  相似文献   

15.
《Science & justice》2023,63(3):396-405
The subject of this research was the inorganic gunshot residue component collected from shooting patterns obtained on woven cotton cloth using a Pietro Beretta model 70 pistol, cal. 7.65 mm and Serbian ammunition for the following muzzle-to-target distances: 25, 50, 75, 100 and 125 cm. For each distance, three rounds of shooting were performed. Particles were lifted within a 10 cm radius of the projectile entrance and automatically analyzed using a scanning electron microscope coupled with an energy dispersion X-ray spectrometry. The obtained data on the populations of particles were analyzed taking into account their numbers, chemical classes and sizes. The results showed an apparent maximum incidence within all particles containing barium at about 50 cm distance. Also, lead particles revealed a distinct behaviour, being dominant at a 25 cm distance, falling below the other chemical classes, and finally becoming dominant again at 125 cm. The analysis of the frequency of occurrence of particles sorted according to their sizes confirmed that the small particle population is the largest, and their distribution in function of the equivalent circle diameter is exponential-like. The obtained results provided knowledge on the distribution of particles in the vicinity of the tested firearm and ammunition cal. 7.65 mm which generally corroborates with similarly studied GSR distributions obtained for the use of pistols cal. 9 mm. This information, together with the examinations of gunshot damages and other types of residues such as soot or unburned propellant grains may support qualitative inferences on shooting distance estimation, especially in cases, when the firearm and cartridges are not available to perform test shooting. In such cases even roughly estimated shooting distance can be helpful, e.g. for confirming or excluding the possibility of self-inflicted injuries or suicide and infer on the mutual position of the shooting stage actors. An example of casework that illustrates intermediate shooting distance estimation is presented.  相似文献   

16.
Abstract:  Automated scanning electron microscopy with energy dispersive spectroscopy has been used to analyze airbag residue particles. Analysis of airbag residue from some passenger side airbags revealed some residue particles which are consistent with gunshot residue (GSR) samples. The source of these particles was determined to be percussion primers used to initiate the chemical reaction for deployment. This article identifies some vehicles which contain this type of airbag and demonstrates the types of particles which could be misidentified as being GSR. The low numbers of GSR particles in among the large particle populations of zirconium and/or copper–cobalt particles, which are clearly airbag residue, allow the trained analysts to distinguish the correct source of this residue. Particles containing high aluminum levels, elevated levels of allowable elements in GSR particles, or the presence of elements that are rare in GSR particles stand out as indications that the particles are not GSR in origin. This study serves as a guide to analysts who perform particle analysis in forensic investigations.  相似文献   

17.
A study of the chemical contents and sizes of gunshot residue originating from 9×18mm PM ammunition, depositing in the vicinity of the shooting person was performed by means of scanning electron microscopy and energy dispersive X-ray spectrometry. Samples of the residue were collected from targets placed at various distances in the range 0-100cm as well as from hands and clothing of the shooting person. Targets were covered by fragments of white cotton fabric or black bovine leather. In the case of cotton targets microtraces were collected from circles of 5 and 10cm in radius. Results of the examinations in the form of numbers of particles, proportions of their chemical classes and dimensions revealed a dependence on the distance from the gun muzzle, both in the direction of shooting and in the opposite one, i.e., on the shooting person. The parameters describing gunshot residue differed also depending on the kind of the target substrate. The kind of obtained information gives rise to understanding the general rules of the dispersion of gunshot residue in the surroundings of the shooting gun. Thus, it may be utilised in the reconstruction of shooting incidences, especially in establishing the mutual positions of the shooter and other participants of the incident.  相似文献   

18.
In light of past research being targeted to find specific particles which may be similar to gunshot residue (GSR), this project was formulated to detect any possible particulate by random particle fallout onto substrates at firework displays and to assess the impact this may have on GSR evidence. Firework residue was collected at a display site, from amongst spectators as well as from the author's hair 90min after the display. SEM-EDX analysis has detected such particulate in all three scenarios, with the firework particle population at large providing a solid ground for discrimination from GSR. Wind dispersal was found to decrease the particle population and subsequently, the latter's discriminatory power. Some particles, if treated individually were found to be indistinguishable from GSR. Findings also include residues which may mimic strontium based GSR as well as GSR which may be mixed with that from previous firings. The continuous changes made to primer and propellant compositions by manufacturers also call for greater consideration when classifying particles as originating from pyrotechnic devices. Furthermore, authorities such as police forces should be made more aware about the incidence of such particle transfer in firework related periods.  相似文献   

19.
Automated scanning electron microscopy coupled with image analysis and X-ray micro analysis was used to characterize a variety of gunshot residue (GSR) samples. More than 500 rounds of commercially available ammunition and six different types of hand gulls were used in the study of 17 GSR and 19 reference specimens. The individual particle X-ray composition was determined for 12 different elements. Elemental composition of GSR particles was highly variable but consistent with compounds mixed into or associated with a barium oxide matrix. When present in a specimen, GSR could be adequately characterized with automated procedures in less than an hour by restricting analyses to features larger than 2 microm. In "clean" samples, a higher resolution particle search was required to avoid reporting false negatives. Careful control of the back scattered electron signal strength threshold, by reference to a standard, was needed to ensure both time-efficient and accurate analyses. Samples collected from non-shooting subjects. active in a physical environment which contained firearms discharge residue were seen to be easily contaminated by sub-micron GSR particles.  相似文献   

20.
The techniques of atomic force microscopy (AFM) and Fourier transform infrared attenuated total reflectance (FTIR/ATR) spectroscopy are applied to the analysis of gun-shot residue (GSR) to test their ability to determine shooting distance and discrimination of the powder manufacturers. AFM is a nondestructive technique that is capable of characterizing the shapes and size distributions of GSR particles with resolution down to less than a nanometer. This may be useful for estimation of the shooting distance. Our AFM images of GSR show that the size distribution of the particles is inversely proportional to the shooting distance. Discrimination of powder manufacturers is tested by FTIR/ATR investigation of GSR. Identifying the specific compounds in the GSR by FTIR/ATR was not possible because it is a mixture of the debris of several compounds that compose the residue. However, it is shown that the GSR from different cartridges has characteristic FTIR/ATR bands that may be useful in differentiating the powder manufacturers. It appears promising that the development of AFM and FTIR/ATR databases for various powder manufacturers may be useful in analysis and identification of GSR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号