首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
尿液、血液中γ-羟丁酸的气质联用法分析   总被引:3,自引:0,他引:3  
目的为尿液、血液中γ-羟丁酸(gamma-hydroxybutyricacid,GHB),γ-羟丁酸内酯(gamma-butyrolactone,GBL)和1,4-丁二醇(1,4-butanediol,1,4-BD)的鉴定提供方法和依据。方法100μl尿液或血液以GHBd6为内标,经乙酸乙酯提取、BSTFA衍生化后,用GC/MS法分析。结果测尿液中内源性GHB的线性范围是20-800ng/ml,R2=0.9995,最低检出限为10ng/ml(S/N≥3);测尿液、血液中外源性GHB的线性范围为5-60μg/ml,R2分别为0.9999和0.9928。相对回收率为99%-104%。以所建方法测定了健康志愿者尿液中内源性GHB含量,并考察了健康受试者外源性GHB的代谢情况。结论所建方法准确、便捷、省时、选择性好,适用于法医毒物学鉴定。  相似文献   

2.
Urinary endogenous concentrations of gamma-hydroxybutyric acid (GHB), alpha-hydroxybutyric acid (AHB) and beta-hydroxybutyric acid (BHB) have been investigated for both healthy humans and diabetics by using a newly optimized GC-MS procedure. The endogenous concentrations in healthy volunteers' urine ranged 0.16-2.14 microg/ml for GHB, 0.10-2.68 microg/ml for AHB and 8.51-34.7 microg/ml for BHB. In diabetics, the concentrations ranged 0.17-3.03 microg/ml for GHB, 0.14-124 microg/ml for AHB and 4.94-4520 microg/ml for BHB. Although notably elevated BHB and AHB concentrations were observed for severely uncontrolled diabetics, their GHB concentrations ranged within or near the range seen in healthy humans. The results of this study confirm the previously suggested 10 microg/ml cutoff concentration of urinary GHB to distinguish exogenous GHB, even for uncontrolled diabetic patients suffering severe ketoacidosis.  相似文献   

3.
GHB can be produced either as a pre- or postmortem artifact. The authors describe two cases in which GHB was detected and discuss the problem of determining the role of GHB in each case. In both cases, NaF-preserved blood and urine were analyzed using gas chromatography. The first decedent, a known methamphetamine abuser, had GHB concentrations similar to those observed with subanesthetic doses (femoral blood, 159 microg/ml; urine, 1100 microg/ml). Myocardial fibrosis, in the pattern associated with stimulant abuse, was also evident. The second decedent had a normal heart but higher concentrations of GHB (femoral blood, 1.4 mg/ml; right heart, 1.1 mg/ml; urine, 6.0 mg/ml). Blood cocaine and MDMA levels were 420 and 730 ng/ml, respectively. Both decedents had been drinking and were in a postabsorptive state, with blood to vitreous ratios of less than 0.90. If NaF is not used as a preservative, GHB is produced as an artifact. Therefore, the mere demonstration of GHB does not prove causality or even necessarily that GHB was ingested. Blood and urine GHB concentrations in case 1 can be produced by a therapeutic dose of 100 mg, and myocardial fibrosis may have had more to do with the cause of death than GHB. The history in case 2 is consistent with the substantial GHB ingestion, but other drugs, including ethanol, were also detected. Ethanol interferes with GHB metabolism, preventing GHB breakdown, raising blood concentrations, and making respiratory arrest more likely. Combined investigational, autopsy, and toxicology data suggest that GHB was the cause of death in case 2 but not case 1. Given the recent discovery that postmortem GHB production occurs even in stored antemortem blood samples (provided they were preserved with citrate) and the earlier observations that de novo GHB production in urine does not occur, it is unwise to draw any inferences about causality unless (1) blood and urine are both analyzed and found to be elevated; (2) blood is collected in NaF-containing tubes; and (3) a detailed case history is obtained.  相似文献   

4.
We report a case of fatal intoxication from 1,4‐butanediol (1,4‐BD), which was ingested by a young and “naïve” gamma‐hydroxybutyrate (GHB) consumer during a party with the co‐ingestion of alcohol, cannabis, and methylene‐dioxy‐methamphetamine. The following drug concentrations were found using gas chromatography coupled with mass spectrometry on autopsy samples and on a cup and a glass found at the scene: 20,350 mg/L (bottle) for 1,4‐BD; 1020 mg/L (femoral blood), 3380 mg/L (cardiac blood), 47,280 mg/L (gastric content), and 570 mg/L (vitreous humor) for GHB. The concentration of GHB is difficult to interpret in forensic cases due to the possibility of an endogenous production of GHB. The variable tolerance of the user may also modify the peri‐ and postmortem GHB concentrations. This case underscores the need to have many different sources of toxicology samples analyzed to avoid the hypothesis of endogenous production of GHB.  相似文献   

5.
This study compared endogenous gamma-hydroxybutyric acid (GHB) concentrations in various postmortem fluid samples of 25 autopsy cases. All bodies were stored between 10-20 degrees C until autopsy, and the intervals between death and autopsy were less than 2 days (6-48 h). GHB concentrations were measured by headspace gas chromatography after GHB was converted to gamma-butyrolactone. Endogenous GHB concentrations were significantly higher in femoral venous blood (4.6+/-3.4 microg/ml, n=23) than in cerebrospinal fluid (1.8+/-1.5 microg/ml, n=9), vitreous humor (0.9+/-1.7 microg/ml, n=8), bile (1.0+/-1.1 microg/ml, n=9) and urine (0.6+/-1.2 microg/ml, n=12). GHB concentrations were similar in blood samples taken from different sites. Cut-off limits of 30 and 10 microg/ml are proposed for blood and urine, respectively, to discriminate between exogenous and endogenous GHB in decedents showing no or little putrefaction (postmortem intervals usually 48 h or less). The criterion established for endogenous GHB in postmortem urine may also be applicable to analytical results in cerebrospinal fluid, vitreous humor and bile from deceased persons.  相似文献   

6.
A fatal case of 1,4-butanediol (1,4-BD) oral ingestion is reported here, in which a 51-year-old man was found dead in his bed. According to the police report, the deceased was a known drug user. A glass bottle labeled (and later confirmed to be) “Butandiol 1,4” (1,4-BD) was found in the kitchen. Furthermore, the deceased's friend stated that he consumed 1,4-BD on a regular basis. The autopsy and histological examination of postmortem parenchymatous organ specimens did not revealed a clear cause of death. Chemical-toxicological investigations revealed gammahydroxybutyrat (GHB) in body fluids and tissues in the following quantities: femoral blood 390 mg/L, heart blood 420 mg/L, cerebrospinal fluid 420 mg/L, vitreous humor 640 mg/L, urine 1600 mg/L, and head hair 26.7 ng/mg. In addition, 1,4-BD was qualitatively detected in the head hair, urine, stomach contents, and the bottle. No other substances, including alcohol, were detected at pharmacologically relevant concentrations. 1,4-BD is known as precursor substance that is converted in vivo into GHB. In the synoptic assessment of toxicological findings, the police investigations and having excluded other causes of death, a lethal GHB-intoxication following ingestion of 1,4-BD, can be assumed in this case. Fatal intoxications with 1,4-BD have seldom been reported due to a very rapid conversion to GHB and, among other things, non-specific symptoms after ingestion. This case report aims to give an overview to the published of fatal 1,4-BD-intoxications and to discuss the problems associated with detection of 1,4-BD in (postmortem) specimens.  相似文献   

7.
Gamma-hydroxybutyric acid's (GHB's) natural presence in the body has made the interpretation of its levels a challenging task for the forensic toxicologist. This study was designed to measure endogenous GHB levels in antemortem urine and blood samples. The range detected in urine was from 34 to 575 microg/dl and in blood from 17 to 151microg/dl. The results indicate that the concentration of endogenous GHB in urine and blood concur with the suggested cut-off levels at 1000 and 500 microg/dl, respectively.  相似文献   

8.
A liquid-chromatography-tandem-mass-spectrometry method using pneumatically assisted electrospray ionisation (LC-ESI-MS/MS) was developed for the simultaneous determination of γ-hydroxybutyric acid (GHB), γ-butyrolactone (GBL) and 1,4-butanediol (1,4-BD) in human ante-mortem and post-mortem whole blood. The blood proteins were precipitated using a mixture of methanol and acetonitrile, and the extract was cleaned-up by passage through a polymeric strong cation exchange sorbent. Separation of the analytes and their structural isomers was obtained using a column with a zwitterionic stationary phase. Matrix-matched calibrants, combined with isotope dilution, were used for quantitative analysis. GHB was determined in both positive and negative ion modes. The relative intra-laboratory reproducibility standard deviations were better than 10% and 6% for blood samples at concentrations of 2mg/L and 20-150mg/L, respectively. The mean true extraction recoveries were 80% for GHB and greater than 90% for GBL and 1,4-BD at concentration levels of 20-50mg/L. The limits of detection were approximately 0.5mg/L for GHB and GBL, and 0.02mg/L for 1,4-BD in ante-mortem blood. The corresponding lower limits of quantification were less than 1mg/L for GHB and GBL, and less than 0.1mg/L for 1,4-BD. GBL was unstable in whole blood freshly preserved with a sodium fluoride oxalate mixture, but the stability could be improved significantly by preservation with a sodium fluoride citrate EDTA mixture.  相似文献   

9.
The dead body of a 44-year-old woman, previously known for depression and alcoholism, has been discovered at her place of residence by her husband. A forensic autopsy has been carried out. The results indicated unspecific histological lesions (alveolar oedema, liver steatosis and interstitial nephritis) but did not reveal any apparent cause of death. Several boxes of medicines have been found near the body, justifying a toxicological analysis. This has been performed on peripheral blood and urine samples using liquid chromatography with diode array and mass spectrometric detections, in conjunction with gas chromatography coupled with mass spectrometry. Ethanol has been found (1.24 g/L in blood, 2.63 g/L in urine and 1.33 g/kg in gastric content), as well as therapeutic concentrations of meprobamate (14.1mg/L) and low concentrations of nordazepam (0.12 mg/L) in blood. On the other hand, particularly high levels of labetalol, a widely used beta-blocker, have been found both in blood (1.7 mg/L) and urine (20.2mg/L), which led us to measure labetalol levels in available viscera samples (liver, heart, kidney, and lung) and gastric content. Measured concentrations were 14.2 microg/g, 7.8 microg/g, 5.4 microg/g, 5.2 microg/g and 31.1 microg/g, respectively. We describe here the first report of a fatal intoxication attributed to labetalol that is linked to its acute toxicity, with tissue distribution of this beta-blocker.  相似文献   

10.
Gamma-hydroxybutyrate (GHB) is an increasingly popular drug of abuse that causes stimulation, euphoria, anxiolysis or hypnosis, depending on the dose used. Low doses of the drug are used recreationally, and also implicated in drug-facilitated sexual assaults. Because of the unusually steep dose-response curves, accidental GHB overdosing, leading to coma, seizures or death can occur. Being a controlled substance, GHB is often substituted with its non-scheduled precursors gamma-butyrolactone (GBL) and 1,4-butanediol (BD), which are rapidly metabolized into GHB in the body. Here we describe an assay for GHB, GBL and BD in blood and/or urine samples. GHB and BD were extracted from diluted 200 microL aliquots of samples with t-butylmethylether (plus internal standard benzyl alcohol) in test tubes preloaded with NaCl. After acidification and centrifugation the solvent phase was transferred to a test tube preloaded with Na(2)SO(4), incubated for 30 min, centrifuged again, and evaporated in vacuum. The residue was mixed with N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) in acetonitrile, and injected into a GC-MS. When analyzing GBL, the salting-out step was omitted, and analysis was performed with a GC-FID apparatus. As revealed by the validation data this procedure is suitable for quantitative determination of GHB and its precursors in blood and/or urine samples.  相似文献   

11.
The first case involving an alleged sexual assault linked to the use of gamma-hydroxybutyric acid (GHB) in Oklahoma is reported. A-48-year-old Caucasian woman taking amitriptyline was known to have voluntarily ingested a sports drink containing a relaxing health product. She purportedly experienced unconsciousness that persisted for approximately 4 h. The toxicological testing on urine identified GHB, amitriptyline, and nortriptyline using a capillary Hewlett-Packard 6890 gas chromatograph coupled to a Hewlett-Packard 5973 mass selective detector (MSD). The GHB concentration in urine was 26.9 microg/mL. Urine concentrations of amitriptyline and nortriptyline were not determined. The analytical method used for identifying and quantitating GHB can be applied to matters of forensic interests.  相似文献   

12.
γ-Hydroxybutyrate (GHB) is an increasingly popular drug of abuse that causes stimulation, euphoria, anxiolysis or hypnosis, depending on the dose used. Low doses of the drug are used recreationally, and also implicated in drug-facilitated sexual assaults. Because of the unusually steep dose–response curves, accidental GHB overdosing, leading to coma, seizures or death can occur. Being a controlled substance, GHB is often substituted with its non-scheduled precursors γ-butyrolactone (GBL) and 1,4-butanediol (BD), which are rapidly metabolized into GHB in the body. Here we describe an assay for GHB, GBL and BD in blood and/or urine samples. GHB and BD were extracted from diluted 200 μL aliquots of samples with t-butylmethylether (plus internal standard benzyl alcohol) in test tubes preloaded with NaCl. After acidification and centrifugation the solvent phase was transferred to a test tube preloaded with Na2SO4, incubated for 30 min, centrifuged again, and evaporated in vacuum. The residue was mixed with N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) in acetonitrile, and injected into a GC–MS. When analyzing GBL, the salting-out step was omitted, and analysis was performed with a GC–FID apparatus. As revealed by the validation data this procedure is suitable for quantitative determination of GHB and its precursors in blood and/or urine samples.  相似文献   

13.
Gamma-hydroxybutyric acid (GHB) can cause problems in interpretation of toxicological findings due to its endogenous nature, significant production in tissues after death and potential formation in stored samples. Our study was designed to determine the influence of storage conditions on GHB levels and its possible in vitro formation in blood and urine in cases where no exogenous use of GHB or its precursors was suspected. The samples were prepared by validated method based on liquid-liquid reextraction with adipic acid internal standard and MSTFA derivatization and assayed on a GC-MS operating in EI SIM mode. The first part of the study was performed with pooled blood and urine samples obtained from living and deceased subjects stored with and without NaF (1% w/v) at 4 and -20 degrees C over 8 months. In ante-mortem samples (both blood and urine) no significant GHB production was found. After 4 months of storage, the substantial GHB rise up to 100 mg/Lwas observed in post-mortem blood stored at 4 degrees C without NaF with subsequent gradual decrease in following months. The inhibition of GHB production was apparent during storage in NaF treated frozen blood samples. In post-mortem urine only slight temporary GHB levels were ascertained (up to 8 mg/L). The second part of our study was aimed to analyse 20 individual post-mortem blood samples stored at 4 degrees C for 16-27 days between autopsy and analysis without preservation followed by storage at 4 degrees C with NaF for 4 months. The temporary GHB production with maximum of 28 mg/Lwas detected in some samples.  相似文献   

14.
A simple method of detection was developed for gamma-hydroxybutyrate (GHB). The method involves the derivatization of GHB using a hexyl-chloroformate procedure in aqueous media (such as water or urine), extraction of the derivatization product directly from the sample using solid-phase microextraction, and subsequent separation and detection with gas chromatography quadrupole ion trap mass spectrometry. The deuterated form of GHB (GHB-D6) is used as an internal standard for quantitation. The method was linear for GHB-spiked pure water samples from 2 to 150 microg/mL GHB with a detection limit of 0.2 microg/mL. Spiked urine samples showed linearity from 5 to 500 microg/mL GHB with a detection limit of 2 microg/mL. The SPME-GC/MS method is applied to actual case samples, and the results are compared to those values obtained using a conventional GC/MS method. Sensitivity and linearity are comparable to those seen using traditional methods of separation, yet the SPME method is superior due to the simplicity, speed of analysis, reduction in solvent waste, and ability to differentiate between GHB and gamma-butyrolactone (GBL).  相似文献   

15.
The Authors describe a rare case of suicide in a 31-year-old woman, due to oral ingestion of lidocaine; the histological and toxicological findings are discussed to provide useful information to the present experience with this particular modality of death. Histological examination revealed generalized stasis. In the myocardium we observed segmentation of the myocardial cells and/or widening of intercalated discs and associated group of hypercontracted myocardial cells with "square" nuclei in line with hyperdistended ones. Non-eosinophilic bands of hypercontracted sarcomeres alternating with stretched, often apparently separated sarcomeres, small foci of paradiscal contraction band necrosis, and perivascular fibrosis were observed too. Lidocaine was detected in the subject's urine through immunoenzymatic screening. Toxicological analysis by solid-liquid extraction and gas chromatography-mass spectrometry (GC-MS) analysis, was carried out to identify and quantify the individual substances present in the biological fluids and organs. Lidocaine concentrations were as follows: blood 31 microg/mL, gastric content 2.5 g, liver 10 microg/g, kidney 12 microg/g, brain 9 microg/g, spleen 24 microg/g, lung 84 microg/g, heart 9 microg/g, urine 9 microg/mL, and bile 6 microg/mL. No other drugs or alcohol were detected. When blood lidocaine reaches toxic levels, serious toxic symptoms associated with the central nervous system and cardiac system are noted. The overdose of lidocaine produces death from ventricular fibrillation or cardiac arrest. In this case, according to macroscopic and microscopic findings, the cause of death was most likely cardiac and possibly related to ventricular fibrillation.  相似文献   

16.
Blood, brain, and hair GHB concentrations following fatal ingestion   总被引:1,自引:0,他引:1  
Despite the increasing incidence of illicit use of gamma-hydroxybutyrate (GHB), little information is available documenting levels of the drug in GHB fatalities. We measured GHB levels in postmortem blood, brain and hair specimens from a suspected overdose case by gas chromatography/mass spectrometry (GC/MS) following solid phase extraction (SPE) and derivatization with bis(trimethyl-silyl) trifluoroacetamide (BSTFA). Examination found 330 microg/mL GHB in femoral blood and 221 ng/mg GHB in frontal cortex brain tissue, values higher than those typically reported in the literature. The hair shaft was negative for GHB whereas the plucked root bulbs with outer root sheath attached (2,221 ng/mg) and root bulbs after washing and removal of the outer root sheath (47 ng/mg) contained the drug. Our results are consistent with an acute single dose of GHB and, as the toxicology screen was negative for other drugs of abuse, emphasize the significant danger of this drug.  相似文献   

17.
A fatality due to ingestion of flurazepam is reported. Flurazepam is a benzodiazepine, a widely prescribed hypnotic drug for use in sleep disorders. There are only few documented reports of the disposition of flurazepam in deaths due to overdose. A 68-year-old woman was found deceased at home with no evidence of trauma or asphyxia. Toxicologic analyses were performed and drug levels measured by means of gas chromatography coupled to mass spectrometry. The flurazepam concentration in each specimen was as follows: heart blood 2.8 microg/mL, bile 323 microg/mL, and urine 172 microg/mL. Presence of flurazepam into gastric content was observed too. Based on the autopsy findings, patient history, and toxicologic results, the cause of death was determined to be acute intoxication of flurazepam and the manner, suicide.  相似文献   

18.
Several drug packages, including Subutex (high-dose buprenorphine, as sublingual tablets) boxes, were found near the corpse of a 25-year-old male drug addict, who apparently had committed suicide. The autopsy revealed a fatal respiratory depression. The toxicological investigations concluded that death resulted from massive burpienorphine intoxication. The determination of buprenorphine (BU) and norbuprenorphine (NBU) in all biological specimens was performed by liquid chromatography-electrospray mass spectrometry (LC-ES-MS) after hydrolysis (for solid tissues), deproteinization of the matrices, and solid-phase extraction of the compounds. Exceptionally high concentrations of BU and NBU were found in blood (3.3 and 0.4 mg/L, respectively), urine (3.4 and 0.6 mg/L), bile (2035 and 536 mg/L and brain (6.4 a nd 3.9 microg/g). The high concentration of BU (899 mg/L) and the absence of NBU in gastric liquid suggested oral intake. High concentrations of amino-7-flunitra/epam, the main metabolite of flunitra/epam, were also found in blood, urine and gastric liquid. This benzodiazepine may have been a co-factor in the toxic effects of BU.  相似文献   

19.
In this study, forensic cases involving the use of Gamma Hydroxy Butyric acid (GHB) from the second half of 1999 through the second half of 2001 in The Netherlands (blood >5mg/l and urine >10mg/l) are described. GHB was analysed by GC-MS after lactone formation and using GHB-d6 as internal standard. The results are divided into three groups: cases of chemical submission, cases of driving under the influence and cases of unknown causes of death.GHB was found in six cases of possible chemical submission. In these cases, relatively low concentrations of GHB were found. The results show that in cases of chemical submission, urine should be analyzed, because GHB is present longer in urine than in blood. The police should collect the samples in containers that do not contain citrate as anticoagulant. Especially at low levels of GHB, the formation of GHB in these tubes hampers an interpretation of the results.GHB was found in 13 cases of driving under the influence. In contrast to the cases of chemical submission, high concentrations of GHB were found, corresponding with observations of extreme sleepiness or temporary loss of consciousness.GHB was found in 16 cases of unexplained death: the measured range of GHB concentrations in blood might correspond to effects such as drowsiness, but not to serious toxicity of GHB. In 4 of these 16 cases, the role of GHB could be excluded. In the remaining cases, the role of GHB remains unclear; more research into "background" concentrations of GHB in post-mortem material is required.The incidence of the use of GHB in The Netherlands cannot be derived from these toxicological data. As GHB is not routinely found during systematical toxicological analyses, these data may seriously underestimate the use of GHB. Therefore, information from the police to the forensic institute is essential.  相似文献   

20.
Tolperisone (Mydocalm) is a centrally acting muscle relaxant with few sedative side effects that is used for the treatment of chronic pain conditions. We describe three cases of suicidal tolperisone poisoning in three healthy young subjects in the years 2006, 2008 and 2009. In all cases, macroscopic and microscopic autopsy findings did not reveal the cause of death. Systematic toxicological analysis (STA) including immunological tests, screening for volatile substances and blood, urine and gastric content screening by GC-MS and HPLC-DAD demonstrated the presence of tolperisone in all cases. In addition to tolperisone, only the analgesics paracetamol (acetaminophen), ibuprofen and naproxen could be detected. The blood ethanol concentrations were all lower than 0.10 g/kg. Tolperisone was extracted by liquid-liquid extraction using n-chlorobutane as the extraction solvent. The quantification was performed by GC-NPD analysis of blood, urine and gastric content. Tolperisone concentrations of 7.0 mg/l, 14 mg/l and 19 mg/l were found in the blood of the deceased. In the absence of other autopsy findings, the deaths in these three cases were finally explained as a result of lethal tolperisone ingestion. To the best of our knowledge, these three cases are the first reported cases of suicidal tolperisone poisonings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号