首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Several series of experiments were performed to study the distribution of GSR particles in seven directions in the surroundings of shooting firearm (pistol CZ 85 caliber 9 mm Luger). External and internal conditions and two different primer types were used for the shooting experiments. The results showed that maximum number of GSR particles could be found in the right front quadrant at a distance of 2–4 m with respect to the shooting firearm position and shooting direction. GSR particles were even found in distance 10 m from shooting firearm. A significant influence of climatic conditions on GSR distribution was confirmed.  相似文献   

3.
A review of the scientific papers published on inorganic gunshot residue (GSR) analysis permits to study how the particle analysis has shown its capability in detection and identification of gunshot residue. The scanning electron microscope can be the most powerful tool for forensic scientists to determine the proximity to a discharging firearm and/or the contact with a surface exposed to GSR. Particle analysis can identify individual gunshot residue particles through both morphological and elemental characteristics. When particles are detected on the collected sample, the analytical results can be interpreted following rules of a formal general interpretative system, to determine whether they come from the explosion of a primer or from other possible sources. The particles on the sample are compared with an abstract idea of "unique" GSR particle produced by the sole source of the explosion of a primer. "Uniqueness" is not the only problem related to GSR detection and identification for a forensic scientist. With "not-unique" particles interpretation of results is extremely important. The evidential strength of "not-unique" particles can increase with a more fruitful interpretative framework based on Bayes rule. For the assessment of the value of a GSR in linking a suspect and a crime, it is important to compare two hypothesis: the first can be that of the evidence if the suspect has been shooting in a specific situation, the second that of the evidence if the suspect was not involved in this shooting. This case specific or case-by-case approach is closer to what the court is interested in. The authors consider that a "case-by-case" approach should be followed whenever possible. Research of models and data such as those developed in other trace evidence material (fibres, glass, etc.) using a Bayesian approach is suggested in the interpretation of GSR.  相似文献   

4.
Detection of gunshot residue (GSR) is an arduous task for investigators. It is often accomplished with chemical tests, which can reveal elements and ions indicating the presence of GSR, but are likely to cause physical alteration to the pattern. In this study, the Spex Forensics Mini‐CrimeScope MCS 400, along with 16 accompanying wavelength filters, was applied to various GSR patterns and target types. Three dark shirt materials, four ammunition calibers, and eight ammunition manufacturers, along with the primer residue of the different manufacturer ammunitions were tested. Results indicate the alternate light source wavelength of 445 nm to be the optimal setting. In addition, target material plays a large role in the preservation of GSR patterns as particles burn. Furthermore, it can be extrapolated that residue, observed from a full round and firing distance of six inches, is mostly composed of unburnt gunpowder residue, not primer residue.  相似文献   

5.
Suspects in shooting investigations in Chicago are routinely transported in department vehicles and detained in department facilities prior to gunshot residue (GSR) evidence collection. The GSR test results are used to associate the suspect with primary exposure to GSR. The potential for these vehicles and facilities being sources of secondary GSR contamination needed to be determined. A total of 201 samples were collected from randomly selected vehicles and detention facilities. The sampling collected trace materials from surfaces that suspects' hands may contact during the arrest process. These samples were examined for the presence of GSR particles using scanning electron microscopy. Upon completion of the automated analysis, those particles that met an initial GSR screening criterion were relocated and reanalyzed. The locations where GSR particles were recovered allowed us to make recommendations to the Chicago Police Department with regard to transporting and detaining these suspects. The low number of GSR particles recovered suggests that the potential for secondary contamination, although present, is relatively low.  相似文献   

6.
In light of past research being targeted to find specific particles which may be similar to gunshot residue (GSR), this project was formulated to detect any possible particulate by random particle fallout onto substrates at firework displays and to assess the impact this may have on GSR evidence. Firework residue was collected at a display site, from amongst spectators as well as from the author's hair 90min after the display. SEM-EDX analysis has detected such particulate in all three scenarios, with the firework particle population at large providing a solid ground for discrimination from GSR. Wind dispersal was found to decrease the particle population and subsequently, the latter's discriminatory power. Some particles, if treated individually were found to be indistinguishable from GSR. Findings also include residues which may mimic strontium based GSR as well as GSR which may be mixed with that from previous firings. The continuous changes made to primer and propellant compositions by manufacturers also call for greater consideration when classifying particles as originating from pyrotechnic devices. Furthermore, authorities such as police forces should be made more aware about the incidence of such particle transfer in firework related periods.  相似文献   

7.
毛发枪弹损伤的环境扫描电镜研究   总被引:1,自引:0,他引:1  
目的探讨毛发枪弹损伤微观形态与射击距离之间的关系。方法应用环境扫描电镜/能谱仪对64式手枪在0~200cm范围内射击造成的毛发损伤及附着物进行形态和成分分析。结果0~30cm射击,毛发表面粘附有大量密集分布的球形射击残留物颗粒,鳞片有严重斑纹状损伤和崩裂缺损;30~60cm射击,毛发表面粘附有较多散在分布的球形射击残留物颗粒,鳞片有轻微斑纹状损伤和崩裂缺损;100cm距离射击,毛发表面粘附有少数个别射击残留物颗粒,鳞片无斑纹状损伤;200cm距离射击,毛发表面无射击残留物。毛发枪弹射击断裂形态差异较大,大体分为剪切断裂和牵拉断裂两种类型,与射击距离无明显相关性。结论毛发表面粘附的大量球形射击残留物颗粒及其造成的鳞片斑纹状损伤对于法医学鉴定贴近距离射击((30cm)具有重要的实用价值。  相似文献   

8.
With heavy-metal-free ammunitions becoming more and more popular, it is necessary to find methods to visualize patterns of those elements in gunshot residues (GSRs) that are not accessible by chemographic coloring tests. The recently introduced millimeter-X-ray fluorescence analysis (m-XRF) spectrometer Spectro Midex M offers an easy way to record mappings of GSRs containing such elements in order to determine shooting distances as well as the general composition of these particles. A motorized stage enables samples of a maximum size of 20 x 20 cm to be investigated, like fabric, clothes, adhesive tapes (Filmolux films), and polyvinylalcohol gloves of shooter's hands. Human tissues can be measured using a Peltier-cooled specimen holder that is mounted onto the stage. As the spot size of the exiting X-rays lies in the millimeter range, which is adequate for the assessment of the residue patterns for shooting distance determination, a significant reduction in measurement time is achieved compared with mu-XRF methods. Test shots with heavy-metal-free ammunitions were performed on different target materials, like pork skin and fabric, and the elemental distributions of Ti, K, and Ga were determined. In order to show the capability of the spectrometer for conventional lead ammunitions as well, a shot series of 5-100 cm shooting distance and an adhesive tape of a shooter's hand were investigated analogously. A comparison of several methods applied in GSR investigation shows the advantages of the m-XRF method.  相似文献   

9.
Quantifying the strength of gunshot residue (GSR) evidence requires scientific knowledge about the number of particles expected to be found on individuals who were or were not involved in a shooting. However, controlled experiments demand expensive resources in terms of microscope time and labor, which restricts the data of most studies to only a small group of individuals. We suggest a novel method that exploits data collected routinely on suspects during the daily work of forensic laboratories. These observational data relate to both persons who were involved in a shooting and innocent individuals. We suggest a mixture approach with different models for the number of gunshot residue particles in each group and develop an iterative algorithm to estimate the probabilities of observing the evidence under the defense proposition that the suspect is innocent and under the prosecution assumption that he is not. The method is applied to data of more than 500 suspects collected by the Israel National Police Division of Identification and Forensic Science. The analysis shows that the probability of finding three or more GSR particles on the hands of innocent suspects is very small, less than 1.5 in 1000 cases. Our new method enables researchers to use data on real cases, possibly supplemented by experimental data, in order to estimate the probabilities of a given GSR finding under the defense and prosecution propositions.  相似文献   

10.
《Science & justice》2023,63(3):396-405
The subject of this research was the inorganic gunshot residue component collected from shooting patterns obtained on woven cotton cloth using a Pietro Beretta model 70 pistol, cal. 7.65 mm and Serbian ammunition for the following muzzle-to-target distances: 25, 50, 75, 100 and 125 cm. For each distance, three rounds of shooting were performed. Particles were lifted within a 10 cm radius of the projectile entrance and automatically analyzed using a scanning electron microscope coupled with an energy dispersion X-ray spectrometry. The obtained data on the populations of particles were analyzed taking into account their numbers, chemical classes and sizes. The results showed an apparent maximum incidence within all particles containing barium at about 50 cm distance. Also, lead particles revealed a distinct behaviour, being dominant at a 25 cm distance, falling below the other chemical classes, and finally becoming dominant again at 125 cm. The analysis of the frequency of occurrence of particles sorted according to their sizes confirmed that the small particle population is the largest, and their distribution in function of the equivalent circle diameter is exponential-like. The obtained results provided knowledge on the distribution of particles in the vicinity of the tested firearm and ammunition cal. 7.65 mm which generally corroborates with similarly studied GSR distributions obtained for the use of pistols cal. 9 mm. This information, together with the examinations of gunshot damages and other types of residues such as soot or unburned propellant grains may support qualitative inferences on shooting distance estimation, especially in cases, when the firearm and cartridges are not available to perform test shooting. In such cases even roughly estimated shooting distance can be helpful, e.g. for confirming or excluding the possibility of self-inflicted injuries or suicide and infer on the mutual position of the shooting stage actors. An example of casework that illustrates intermediate shooting distance estimation is presented.  相似文献   

11.
Law enforcement agencies routinely sample for gunshot residue (GSR) by bulk techniques and often submit swabs taken from other surfaces besides the hands of the suspect shooter. This study aims to establish the prevalence of antimony, barium, and lead on normally handled automobile surfaces by graphite furnace atomic absorption analysis. No positives were determined on 50 sampled automobile surfaces above cutoff (positive) from background levels. Transfers of GSR particles from shooter hands to automobile surfaces were found to potentially allow for positive GSR determinations, but such transfers seem to be dependent on the shooting conditions and length of GSR exposure. We determined that our bulk analysis method yields an overall 87.94 ± 5.52% extraction efficiency from cotton swabs, while the LOQ determinations strengthening the fact that bulk analysis methods are valid and valuable tools for GSR investigations.  相似文献   

12.
Gunshot Residue (GSR) produced by the discharge of a firearm often provides very useful information in criminal investigations in cases involving the use of firearms. Scanning Electron Microscopy equipped with an Energy Dispersive X-ray Spectrometer (SEM-EDS) is typically used worldwide to visualize micrometric particles constituting GSR and to analyse their elemental composition. The 2017 ASTM Standard guide for gunshot residue analysis by scanning electron microscopy/energy dispersive X-ray spectroscopy specifies that “Particles classified as characteristic of GSR will have one of the following elemental compositions: Lead, antimony, barium; Lead, barium, calcium, silicon, tin”. For the first time, the presence of an additional element, such as Sn, plays a key role in ASTM particle classification. It is known that some ammunitions, used for pistols, revolvers and rifles, contain tin foil discs for sealing the primer mixture into the cup, resulting in GSR particles containing Sn. The authors faced some cases in which Sn was unexpectedly found in GSR particles from a 0.22 Long Rifle derringer and from some 12 gauge shotguns. No tin foil discs are used in rimfire ammunitions and there is no published evidence of tin foil discs in shotshell ammunitions. Following a “case by case” approach, experimental research has been carried out to explain how Sn can be present in GSR particles when the last discharged cartridge also does not contain any Sn either in components and in the explosive charges.Moreover, the use of Particle Induced X-ray Emission (PIXE) showed the capability to overcome overlap ambiguity of Sb and Sn peaks in the X-ray spectra, being a possible key issue in real shooting cases if Sn quantities are below the lower limit of SEM detection, especially when Sb is also present.  相似文献   

13.
Abstract:  Automated scanning electron microscopy with energy dispersive spectroscopy has been used to analyze airbag residue particles. Analysis of airbag residue from some passenger side airbags revealed some residue particles which are consistent with gunshot residue (GSR) samples. The source of these particles was determined to be percussion primers used to initiate the chemical reaction for deployment. This article identifies some vehicles which contain this type of airbag and demonstrates the types of particles which could be misidentified as being GSR. The low numbers of GSR particles in among the large particle populations of zirconium and/or copper–cobalt particles, which are clearly airbag residue, allow the trained analysts to distinguish the correct source of this residue. Particles containing high aluminum levels, elevated levels of allowable elements in GSR particles, or the presence of elements that are rare in GSR particles stand out as indications that the particles are not GSR in origin. This study serves as a guide to analysts who perform particle analysis in forensic investigations.  相似文献   

14.
In 0.22 caliber rimfire ammunition, the primer often contains lead or lead and barium compounds. As residues from these primers do not contain lead, barium, and antimony, they cannot be uniquely classified as gunshot residue (GSR) under ASTM designation E 1588-95. In many types of 0.22 caliber rimfire ammunition, the cartridge contains a primer sensitized with glass. In this paper we describe a previously unreported type of GSR particle consisting of glass fused with other primer components. As there appear to be few potential environmental or occupational sources of particles composed of lead and barium compounds fused to glass, particularly borosilicate glass, these particles may have high evidential value. Scanning electron microscopy with energy dispersive X-ray detection (SEM-EDX) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) were evaluated for the characterization of glass-containing GSR particles. The occurrence of glass-containing GSR particles was established in the residue from various brands of 0.22 caliber ammunition, and several sub-types were identified.  相似文献   

15.
Experiments were conducted to assess the effect of machine washing or brushing of clothing items on Gunshot Residue (GSR) patterns (gunpowder residues, lead, and copper, deposits) around bullet entrance holes. Results show that those treatments decrease considerably the amount and density of GSR. However, for close shooting distances not all of the GSR deposits are removed. Remaining patterns may be visualized by specific color reactions and used for shooting distance estimation.  相似文献   

16.
The application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) for the characterisation of gunshot residue (GSR) from 0.22 caliber rimfire ammunition is reported. Results obtained by TOF-SIMS were compared with conventional scanning electron microscopy (SEM) studies. As could be expected, TOF-SIMS exhibited greater elemental sensitivity than SEM equipped with energy dispersive X-ray detection (SEM-EDX), and was also capable of detecting fragments characteristic of inorganic compounds. This preliminary study indicates that TOF-SIMS offers substantial potential for forensic GSR examinations as a complementary technique to SEM-EDX. In addition TOF-SIMS is applicable to the analysis of individual particles in the typical size range encountered in GSR casework.  相似文献   

17.
The elemental objects of the research study are: determination of time periods corresponding to gunshot residue particles (GSR) deposition after the shot from selected pistols and a revolver, and evaluation of the deposited particles number. For several shooting experiments were used a pistol CZ model 85, caliber 9 mm Luger with common ammunition 9 mm Luger FMJ Sellier & Bellot, a pistol CZ model 70, caliber 7.65 mm Browning (32 ACP) with common 7.65 mm Browning FMJ Sellier & Bellot ammunition and a revolver S&W Modell 60, barell length 2-1/8', cal. .38 Special with common Sellier&Bellot (FMJ) ammunition. The results of the study have indicated the behavior of GSR particles deposited after a single discharge. The overall time interval of GSR particles deposition and the number of deposited particles with the above mentioned arms and ammunition were established. The results can potentially be used for clarifying the situation at crime scenes and for subsequent interpretation of GSR evidential value in caseworks.  相似文献   

18.
Gunshot residue (GSR) analysis is a frequently used forensic method for investigating shooting events. In this process, GSR-particles are detected on pertinent objects, often the hands of a suspect, with energy dispersive X-ray microanalysis in a scanning electron microscope. The question asked in court is usually the following: "… has or has not a given shot been fired by the suspect (at a certain place and time)?" Unfortunately, this question frequently cannot be answered by the analyst. Only the presence or absence of "characteristic" GSR-particles on the investigated sample can be stated with confidence. All other assumptions are inherently biased by many factors that are usually only known by the culprit or are generally unknown. In order to draw more profound conclusions from GSR analytical results, the dynamics of GSR particles have to be considered, i.e., how these particles reach a suspect. Consequently, the formation of the plume after firing was investigated for eleven different firearms with high speed-video analysis. The results show that a vast scope exists between revolvers - distributing many particles near the shooter - and e.g. shotguns that are quite sealed. These differences between the various weapon types should be considered for interpretation of the results of GSR-analysis.  相似文献   

19.
Automated scanning electron microscopy coupled with image analysis and X-ray micro analysis was used to characterize a variety of gunshot residue (GSR) samples. More than 500 rounds of commercially available ammunition and six different types of hand gulls were used in the study of 17 GSR and 19 reference specimens. The individual particle X-ray composition was determined for 12 different elements. Elemental composition of GSR particles was highly variable but consistent with compounds mixed into or associated with a barium oxide matrix. When present in a specimen, GSR could be adequately characterized with automated procedures in less than an hour by restricting analyses to features larger than 2 microm. In "clean" samples, a higher resolution particle search was required to avoid reporting false negatives. Careful control of the back scattered electron signal strength threshold, by reference to a standard, was needed to ensure both time-efficient and accurate analyses. Samples collected from non-shooting subjects. active in a physical environment which contained firearms discharge residue were seen to be easily contaminated by sub-micron GSR particles.  相似文献   

20.
In using infrared or infrared-enhanced photography to examine gunshot residue (GSR) on dark-colored clothing, the GSR particles are microscopically examined directly on the fabric followed by the modified Griess test (MGT) for nitrites. In conducting the MGT, the GSR is transferred to treated photographic paper for visualization. A positive reaction yields an orange color on specially treated photographic paper. The examiner also evaluates the size of the powder pattern based on the distribution of nitrite reaction sites or density. A false-positive reaction can occur using the MGT due to contaminants or dyes that produce an orange cloud reaction as well. A method for enhancing visualization of the pattern produced by burned and partially unburned powder is by treatment of the fabric with a solution of sodium hypochlorite. In order to evaluate the results of sodium hypochlorite treatment for GSR visualization, the MGT was used as a reference pattern. Enhancing GSR patterns on dark or multicolored clothing was performed by treating the fabric with an application of 5.25% solution of sodium hypochlorite. Bleaching the dyes in the fabric enhances visualization of the GSR pattern by eliminating the background color. Some dyes are not affected by sodium hypochlorite; therefore, bleaching may not enhance the GSR patterns in some fabrics. Sodium hypochlorite provides the investigator with a method for enhancing GSR patterns directly on the fabric. However, this study is not intended to act as a substitute for the MGT or Sodium Rhodizonate test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号