首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was performed to examine the relationship between postmortem biochemical values and cause of death. The follow samples were taken from 399 corpses: cerebrospinal fluid (CSF; n = 376, suboccipital), blood (n = 158, femoral vein), and urine (n = 101, at autopsy). (See Table 1 for causes of death) All samples were stored at -80 degrees C. A further 100 samples of blood were later taken and stored at +4 degrees C before testing. Biochemical determinations made were: glucose in CSF, blood, and urine (hexokinase method); lactate (LDH/GPT) and free acetone (HS-gas chromatography) in CSF; hemoglobin A1 in blood (microcolumn technique). In 34 cases fatal diabetic coma was considered verified by morphological and chemical findings. One hundred cases of sudden cardiac death were chosen as the main control group. In 32 of the 34 cases defined above, the value of the formula of Traub (glucose + lactate in CSF) exceeded 415 mg/dl. It is not influenced significantly by hyperglycemia or hyperlactatemia due to factors other than diabetes (i.e., carbon monoxide, asphyxia). After death the value rose till the 30th hpm, then remained stable for at least 1 week. Fatal coma was defined as the ketoacidotic form if free acetone in CSF ranged above 21 mg/l. In these cases, CSF glucose and free acetone correlated positively. Hemoglobin A1 remained stable after death. Its amount was independent from postmortem blood glucose, postmortem interval and total hemoglobin. Furthermore, the manner of storage (-80 degrees or +4 degrees C) had no significant influence on its values. In 29 of 34 cases of fatal coma, Hb A1 exceeded 12.1%. Analysis of urine glucose showed elevated levels (over 500 mg/dl) in diabetic comas. On conclusion, fatal diabetic coma seems indicated as the cause of death if measured values of postmortem biochemistry exceed the following limits: CSF-Traub 415 mg/dl, free acetone (CSF) 21 mg/l; Hb A1 12.1%; urine glucose 500 mg/dl. Most important are the Traub formula and hemoglobin A1. Usually, in fatal coma both values are elevated. If both of them are normal, diabetic coma can nearly be excluded. Combined evaluation of all values is absolutely necessary. Morphology must also always be taken into account. Consequently, a diagnosis of fatal coma can be obtained by a process of elimination.  相似文献   

2.
Postmortem diagnosis of diabetes and a diabetic coma can be difficult because of the lack of characteristic morphological findings. 1,5-Anhydroglucitol (1,5-AG), the 1-deoxy form of glucose, competes with glucose for reabsorption in the kidneys. Therefore, diabetics with a permanent hyperglycemia show significantly lower serum concentrations of 1,5-AG than non-diabetics. A liquid chromatography-mass spectrometric method for the determination of 1,5-AG in serum and postmortem blood was developed and validated according to international guidelines. Linearity was given between 1μg/ml and 50μg/ml. Recovery rates ranged between 70.8% and 89.8%, the limit of quantification of the procedure was 0.20μg/ml, limit of quantification was 0.55μg/ml. Serum of 199 diabetics and 116 non-diabetics and femoral blood of 31 diabetic and 27 non-diabetic deceased was measured. Average concentrations were significantly (p<0.001) higher in non-diabetics compared to diabetics ante and postmortem. Seven of the diabetics may have died because of a hyperglycemic coma indicated by a sum formula of Traub>450mg/dl. 1,5-AG average concentrations in these deceased were not significantly different to diabetics which did not die because of a diabetic coma. Concentrations of 1,5-AG give a hint for not well controlled diabetes antemortem and postmortem and can be assumed as an additional and alternative information postmortem to the measurement of HbA1c or fructosamine.  相似文献   

3.
A case history of a 31-year-old male schizophrenic patient is presented. The man was treated with olanzapine for three weeks before he died. After one week on a 10 mg daily dose of olanzapine, his fasting blood glucose was elevated to 11.3 mmol/L (203 mg/dL). In order to treat more aggressively his psychosis, the olanzapine dose was raised to 20 mg daily resulting in his fasting blood glucose climbing to 15.8 mmol/l (284 mg/dL). On the days preceding his death, he became progressively weaker, and developed polydipsia with polyuria. He had no personal or family history of diabetes mellitus and he was on no other medication at the time of his death. Postmortem blood, vitreous humor, and urine glucose concentrations were 53 mmol/L (954 mg/dL), 49 mmol/L (882 mg/dL), and 329 mmol/L (5922 mg/dL), respectively. Drug screen on urine and blood indicated only a small amount or olanzapine and no alcohols. Peripheral blood olanzapine concentration was within therapeutic limits, 45 ng/mL. Analysis of vitreous humor and urine revealed severe dehydration with small amounts of ketones. Death was attributed to hyperosmolar nonketotic diabetic coma, and olanzapine was felt most likely to be the cause. Another atypical neuroleptic, clozapine, has also been associated with the development and exacerbation of diabetes mellitus or diabetic ketoacidosis. We recommend including vitreous glucose and beta-hydroxybutyrate analysis as part of postmortem toxicology work up when the drug screen reveals the presence of either olanzapine or clozapine.  相似文献   

4.
We report about a fatality during patient-controlled analgesia (PCA). Piritramide peripheral blood concentration was measured with 0.1 mg/l and exceeded the normal therapeutic range. Therefore, a fatal overdose was considered as the cause of death with respiratory depression as the underlying pathophysiological mechanism. The tissue distribution was studied; highest concentrations of piritramide were measured in kidney, bile and urine. Due to a large volume of distribution a difference in the drug concentration found in heart and peripheral bloods the phenomenon of drug redistribution was observed. Confronted with toxicological results, investigations revealed, that the PCA pump had been changed during a previous servicing from displaying mg/h to ml/h, therefore, the anesthetist had entered "1.5" assuming mg/h, but actually applying 1.5 ml/h (which was therefore equivalent to 2.25 mg/h, given a concentration in the cartridge of 1.5 mg piritramide/ml). In total, 61.5 ml (instead of 61.5 mg) had been infused, equivalent to 92.25 mg piritramide. This case report is a further example that human errors can play a crucial role in the safety of medical equipment. Experts in anesthesia recommended human factors engineering design principles to improve the safety of medical devices.  相似文献   

5.
Although approximately 15.7 million Americans have diabetes mellitus, with the vast majority having type 2 diabetes, it is estimated that as many as 5.4 million are undiagnosed. The present case illustrates that undiagnosed diabetes can be a factor in otherwise unexplained deaths. A 39-year-old white male with no significant past medical history other than alcohol abuse was found deceased at his residence. The manner of death appeared to be natural, but no anatomic cause was found. Toxicological analysis revealed a blood ethanol level of 0.02 g/dL and was negative for drugs of abuse. Analysis of the vitreous fluid revealed a glucose level of 502 mg/dL. The blood glucose level was 499 mg/dL, and the hemoglobin A1c (HbA1c) level was 10.6%. Only trace urine ketones were detected, suggesting that the death was the result of hyperglycemic hyperosmolar non-ketosis (HHNK) from unsuspected diabetes. The postmortem HbA1c value serves as a definitive indicator of prolonged hyperglycemia. In order to aid the interpretation of the clinical data, this case is discussed in conjunction with a similar case of a known diabetic patient.  相似文献   

6.
Fructosamine and glycated hemoglobin were determined in samples from 52 cadavers autopsied in the Forensic Pathology Institute of the University of Copenhagen (Denmark). The population studied comprised 15 adult subjects with history of diabetes mellitus and 37 adult non-diabetic subjects. The fructosamine/total protein ratio was 1.7 times higher in diabetic than in non-diabetic subjects, as was the case for glycated hemoglobin. Measurement of glycated serum protein appears to be a useful tool for the postmortem diagnosis of fatal diabetic coma and glucose concentration before death.  相似文献   

7.
This study confirmed post-mortem ethanol concentrations in pericardial fluid and bone marrow aspirate in comparison with those in the blood in medicolegal autopsy cases (n = 140, within 48 h post-mortem). The specimens were examined by head-space gas chromatography/mass spectrometry. Ethanol concentrations in the pericardial fluid (y) were approximately equivalent to those in peripheral blood (x): y = 0.99x + 0.02, n = 44, r = 0.972. A high stomach ethanol concentration (>10 mg/ml) appeared to mildly affect the pericardial levels. There was no significant interference in drowning cases. Ethanol concentrations in bone marrow aspirates (y) also showed a good correlation with those in the peripheral blood (x): y = 0.77 x + 0.02, n = 20, r = 0.981. A dissociation was observed in cases of delayed death from hemorrhagic/traumatic shock and elderly victims. These findings suggest that pericardial fluid and bone marrow aspirate can be used as an alternative material when adequate blood specimens are not available.  相似文献   

8.
Interpretation of the results of psychoactive or other drug measurements in post-mortem blood specimens may not be straightforward, in part because analyte concentrations in blood may change after death. There is also the issue of comparability of plasma (or serum) results to those obtained in whole blood. To investigate these problems with respect to clozapine, this drug (10mg/kg daily) was given orally to two pigs. Blood was collected 3h post-dose on day 7, the animals were sacrificed, and blood taken from central and peripheral veins for up to 48 h after death. Tissue samples were also collected immediately after death and at 48 h. Ante-mortem whole blood clozapine/N-desmethylclozapine (norclozapine) concentrations were 0.86/1.07 and 1.11/1.15 mg/l in pigs 1 and 2, respectively. Blood clozapine and norclozapine concentrations generally increased after death (central vein: clozapine up to 300%, norclozapine up to 460%; peripheral vein: clozapine up to 155%, norclozapine up to 185%). Initial blood and kidney clozapine and norclozapine concentrations were comparable in both animals, but were some two-fold higher in heart, liver and striated muscle in pig 2. In both animals, the heart and striated muscle clozapine and norclozapine concentrations had increased some two- to three-fold at 48 h, whilst the liver and kidney concentrations were essentially unchanged. The reason for the increase in heart and striated muscle concentrations at 48 h is unclear, but could be simple variation in sample site. The plasma:whole blood distribution of clozapine and norclozapine was studied in vitro. In human blood (one volunteer donor, haematocrit 0.50) the plots of plasma versus whole blood concentration were linear for both analytes across the range 0.1-1.5mg/l, although clozapine favoured plasma (plasma:whole blood ratio=1.12), whereas norclozapine favoured whole blood (ratio 0.68). In pig blood, the plots of plasma versus whole blood were non-linear in both cases, although clozapine favoured plasma to a greater extent than norclozapine. This may be due to lower plasma clozapine and norclozapine protein binding capacity in the pig as compared to man.  相似文献   

9.
A suicidal intoxication of a young woman following an overdose of buflomedil is reported. She died in a hospital 17 hours after ingestion. In various body fluids the following buflomedil concentrations were determined: heart blood 24.5 microg/ml, liquor 21.3 microg/ml, bile 39.1 mg/ml and urine 138.6 mg/ml. Additionally the results of autopsy and histology are presented. Anemia of the internal organs was conspicuous; this finding is attributed to the vasodilating effect of buflomedil on the peripheral vessels.  相似文献   

10.
GHB can be produced either as a pre- or postmortem artifact. The authors describe two cases in which GHB was detected and discuss the problem of determining the role of GHB in each case. In both cases, NaF-preserved blood and urine were analyzed using gas chromatography. The first decedent, a known methamphetamine abuser, had GHB concentrations similar to those observed with subanesthetic doses (femoral blood, 159 microg/ml; urine, 1100 microg/ml). Myocardial fibrosis, in the pattern associated with stimulant abuse, was also evident. The second decedent had a normal heart but higher concentrations of GHB (femoral blood, 1.4 mg/ml; right heart, 1.1 mg/ml; urine, 6.0 mg/ml). Blood cocaine and MDMA levels were 420 and 730 ng/ml, respectively. Both decedents had been drinking and were in a postabsorptive state, with blood to vitreous ratios of less than 0.90. If NaF is not used as a preservative, GHB is produced as an artifact. Therefore, the mere demonstration of GHB does not prove causality or even necessarily that GHB was ingested. Blood and urine GHB concentrations in case 1 can be produced by a therapeutic dose of 100 mg, and myocardial fibrosis may have had more to do with the cause of death than GHB. The history in case 2 is consistent with the substantial GHB ingestion, but other drugs, including ethanol, were also detected. Ethanol interferes with GHB metabolism, preventing GHB breakdown, raising blood concentrations, and making respiratory arrest more likely. Combined investigational, autopsy, and toxicology data suggest that GHB was the cause of death in case 2 but not case 1. Given the recent discovery that postmortem GHB production occurs even in stored antemortem blood samples (provided they were preserved with citrate) and the earlier observations that de novo GHB production in urine does not occur, it is unwise to draw any inferences about causality unless (1) blood and urine are both analyzed and found to be elevated; (2) blood is collected in NaF-containing tubes; and (3) a detailed case history is obtained.  相似文献   

11.
12.
This paper presents 21 cases related to cyanide intoxication by oral ingestion. Cyanide concentrations in biological specimens are especially different from the type of postmortem specimens, and very important in interpreting the cause of death in postmortem forensic toxicology. Besides the detection of cyanide in autopsy specimens, the autopsy findings were unremarkable. Biological samples (0.2mL or equal to less than 10μg of cyanide) were analyzed colorimetrically for cyanide. In a series of 21 cyanide fatalities, the concentration ranges (mean±SD) of cyanide in heart blood, peripheral blood and gastric contents were 0.1-248.6mg/L (38.1±56.6mg/L), 0.3-212.4mg/L (17.1±45.1mg/L) and 2.0-6398.0mg/kg (859.0±1486.2mg/kg), respectively. The ranges of the heart/peripheral blood concentration ratio and gastric contents/peripheral blood concentration ratio were 0.3-10.6 (mean 3.4) and 3.4-402.4 (mean 86.0), respectively. From the difference of cyanide concentration and the concentration ratio of cyanide in different types of postmortem specimens, the possibility of the postmortem redistribution of cyanide and death by oral ingestion of cyanide could be confirmed. We reported cyanide fatal cases along with a review of literature.  相似文献   

13.
To clarify the circumstances of death, the degree of inebriation is of importance in many cases, but for several reasons the determination of the ethanol concentration in post-mortem samples can be challenging and the synopsis of ethanol and the direct consumption markers ethyl glucuronide (EtG) and ethyl sulphate (EtS) has proved to be useful. The use of a rather stable matrix like vitreous humor offers further advantages. The aim of this study was to determine the concentrations of ethanol and the biomarkers in the robust matrix of vitreous humor and to compare them with the respective levels in peripheral venous blood and urine. Samples of urine, blood from the femoral vein and vitreous humor were taken from 26 deceased with suspected ethanol consumption prior to death and analyzed for ethanol, EtS and EtG. In the urine samples creatinine was also determined. The personal data, the circumstances of death, the post-mortem interval and the information about ethanol consumption prior to death were recorded. EtG and EtS analysis in urine was performed by LC-ESI-MS/MS, creatinine concentration was determined using the Jaffé reaction and ethanol was detected by HS-GC-FID and by an ADH-based method. In general, the highest concentrations of the analytes were found in urine and showed statistical significance. The mean concentrations of EtG were 62.8mg/L (EtG100 206.5mg/L) in urine, 4.3mg/L in blood and 2.1mg/L in vitreous humor. EtS was found in the following mean concentrations: 54.6mg/L in urine (EtS100 123.1mg/L), 1.8mg/L in blood and 0.9mg/L in vitreous humor. Ethanol was detected in more vitreous humor samples (mean concentration 2.0g/kg) than in blood and urine (mean concentration 1.6g/kg and 2.1g/kg respectively). There was no correlation between the ethanol and the marker concentrations and no statistical conclusions could be drawn between the markers and matrices.  相似文献   

14.
The blood morphine concentrations in cases of heroin-associated fatalities can vary considerably. Currently, a free-morphine concentration of > or = 100 ng/ml in blood is generally considered as potentially fatal. Moreover, it is a common observation that fatal cases of heroin-intoxication with blood morphine concentrations lower than 100 ng/ml occur. This poses the question of how the fatal cases with low blood morphine concentrations can be explained. In the study described here, 62 cases of morphine only intoxications were examined. The fatal cases were divided into two groups according to the free morphine concentrations measured in the blood of the heart (group I: free morphine concentration < 100 ng/ml, n = 21 cases; group II: free morphine concentration > or = 100 ng/ml, n = 41 cases). The two groups were compared as to circumstances of death, as well as to autopsy findings and histopathologic alterations. Overall, infections of the respiratory tract occurred significantly more often in group I (lower morphine concentrations) than in group II. In a second step, the group I cases were analyzed individually to get detailed information on the cause of death. In 19 of the 21 cases the authors could find a plausible explanation for death in combination with low free morphine concentrations in the blood.  相似文献   

15.
An adult male was found dead in a car with two empty bottles (500 ml x 2) labeled dehydrated ethanol (>99.5%, v/v). At autopsy, extensive pancreatic necrosis with severe hemorrhage was observed. High concentrations of ethanol were detected in blood (8.14 mg/ml), urine (8.12 mg/ml) and tissue specimens. The cause of death was determined to be an acute alcohol intoxication caused by ingesting approximately 1l dehydrated ethanol.  相似文献   

16.
The concentrations of zolpidem and zopiclone were determined in peripheral blood samples in two forensic materials collected over a 10-year period (2001-2010). The z-hypnotics were determined in venous blood from living subjects (impaired drivers) and in femoral blood from deceased persons (forensic autopsies), with the latter classified as intoxication or other causes of death. The z-hypnotics were determined in blood by capillary column gas chromatography (GC) with a nitrogen-phosphorous (N-P) detector after solvent extraction with n-butyl acetate. The analytical limit of quantitation (LOQ) was 0.02mg/L for zopiclone and 0.05mg/L for zolpidem and these have remained unchanged throughout the study. When death was attributed to drug intoxication (N=918), the median concentration of zopiclone in blood was 0.20mg/L compared with 0.06mg/L for other causes of death (N=1215) and 0.07mg/L in traffic offenders (N=691) (p<0.001). Likewise, a higher median concentration (0.30mg/L) was found in intoxication deaths involving zolpidem (N=357) compared with 0.13mg/L for other causes of death (N=397) or 0.19mg/L in impaired drivers (N=837) (p<0.001). Median concentration in blood of both z-hypnotics were appreciably higher in intoxication deaths when no other substances were identified; 0 70mg/L (N=12) for zopiclone and 1.35mg/L (N=12) for zolpidem. The median concentrations of z-hypnotics in blood decreased as the number of co-ingested substances increased for intoxication deaths but not other causes of death. The most prevalent co-ingested substances were ethanol in autopsy cases and diazepam in the motorists. This large compilation of forensic cases should prove useful when toxicologists are required to interpret concentrations of z-hypnotics in blood samples in relation to cause of death.  相似文献   

17.
Abstract: During aviation accident investigations, vitreous fluid and urine samples from pilot fatalities are analyzed for glucose and blood for hemoglobin A1c (HbA1c) to monitor diabetic pilots and to discover other pilots with undiagnosed/unreported diabetes. The prevalence of elevated glucose concentrations in fatally injured pilots was evaluated by searching the Civil Aerospace Medical Institute’s Toxicology Database for the period 1998–2005. Out of 1335 pilots involving 363 vitreous fluid, 365 urine, and 607 vitreous fluid and urine analyses, 43 pilots had elevated glucose in vitreous fluid (>125 mg/dL) and/or in urine (>100 mg/dL). Of the 20 pilots whose blood samples were analyzed, nine had >6% HbA1c—four were known diabetics, and five were unknown diabetics. Urinary glucose levels were elevated in all 13 known hyperglycemic pilots. A considerable number of pilots (30 of 43) had elevated glucose and HbA1c (5 of 20), suggesting undiagnosed/unreported diabetic conditions.  相似文献   

18.
In March 2009, the body of a 51‐year‐old man was found in the boot of his car. The body had been frozen before being dismembered at the abdomen. The autopsy failed to determine the cause of death. Systematic toxicological analyses of the victim's peripheral blood and urine showed the presence of atropine, a powerful anticholinergic. Atropine was therefore specifically detected and quantified throughout the victim's biologic samples by HPLC‐MS² in the biologic fluids and UHPLC‐MS² in the hair. The atropine concentrations were 887 ng/mL in the cardiac blood, 489 ng/mL in the peripheral blood, 6693 ng/mL in the gastric contents (1.1 μg), 6753 ng/mL in the urine, and 2290 pg/mg in the hair. The blood concentrations measured in the decedent were consistent with an overdose of atropine, which was determined as the cause of death. The manner of death was a homicide with criminal intent.  相似文献   

19.
This case report describes the suicide of a 52-year-old woman whose cause of death was attributed to a mixed-drug intoxication involving venlafaxine and verapamil. Venlafaxine is prescribed for the treatment of depression and should be used with caution in patients with cardiovascular disease. Verapamil is a calcium channel blocker primarily used for treatment of cardiovascular disorders. The following drug concentrations were determined in postmortem fluids: verapamil--3.5 mg/L (femoral blood), 9.4 mg/L (subclavian blood), and 1.0 mg/L (vitreous fluid); norverapamil--1.0 mg/L (femoral blood), 2.1 mg/L (subclavian blood), and 0.20 mg/L (vitreous fluid); verapamil and norverapamil could not be detected in bile or urine due to the high levels of erythromycin present; venlafaxine--6.2 mg/L (femoral blood), 8.6 mg/L (subclavian blood), 5.3 mg/L (vitreous fluid), 54.0 mg/L (bile), and 72.3 mg/L (urine); and O-desmethylvenlafaxine--5.4 mg/L (femoral blood), 8.3 mg/L (subclavian blood), positive (vitreous fluid), 29.2 mg/L (bile), and 9.5 mg/L (urine). The cause of death was determined to be a mixed-drug intoxication resulting from an overdose of verapamil and venlafaxine. The manner of death was determined to be suicide.  相似文献   

20.
Four cases of sudden and unexpected death caused by the acute onset of diabetes mellitus are reported. Three are examples of acute juvenile diabetes while the fourth demonstrated the aketotic form of diabetic coma. Such instances can present a diagnostic problem to the forensic pathologist. The usefulness of vitreous humor glucose analysis to diagnose such a condition is stressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号