首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The National Institute of Forensic Toxicology, Oslo, receives blood and urine samples from all Norwegian drivers apprehended on suspicion of driving under the influence of alcohol or drugs. In 1983 we received samples from 1446 drug-suspected drivers, out of which 445 underwent toxicological analysis. The drugs found most frequently were tetrahydrocannabinol (THC) (n = 199), diazepam (n = 166) and amphetamine (n = 102). A cautious interpretation of the data indicate that about 200 of the 445 subjects selected for toxicological analysis drove under severe influence of drugs. Because of the high percentage of submitted cases not analysed for drugs, this figure represents a minimum estimate. Compared with the results from 1978, we found a several-fold increase in detections of THC and amphetamine in 1983. The number of diazepam detections did not increase in a similar way, but we estimated that the diazepam detections would have increased 3-fold if we had analysed as frequent for this drug in 1983 as in 1978.  相似文献   

2.
Two hundred and seventy blood samples selected at random from Norwegian drivers apprehended on the suspicion of drunken or drugged driving were screened for the presence of amphetamine, benzodiazepines, cannabinoids, tetrahydrocannabinol (THC) and cocaine. Of the samples tested, 223 were from drivers suspected of driving under the influence of alcohol only (A-cases). In the rest (n = 47) of the cases, the police also suspected drugs as a possible reason for driving impairment (D-cases). In the A-cases, benzodiazepines were found in 17%, cannabinoids in 26%, THC in 13% and amphetamine in 2% of the blood samples. One or more drugs besides ethanol were found in 38% of the A-samples. In the D-cases, benzodiazepines were found in 53%, cannabinoids in 43%, THC in 43%, amphetamine in 13% and 77% of these samples contained one or more drugs. Cocaine was not detected in any sample. Blood alcohol concentrations (BAC) above the legal limit of 0.05% were found in 80% of the drug positive A-cases and in 28% of the drug positive D-cases. The frequency of drug detection in A-samples was similar (40%) in samples with BAC above and below 0.05%, while this frequency was much higher (above 90%) in D-samples with BAC below 0.05% than in D-samples with BAC above 0.05% (53%). Benzodiazepines were most frequently found among drivers above 25 years of age, while cannabinoids were most frequently found among drivers below 35 years. For about 15-20% of the A-cases with BAC below 0.05%, other drugs were detected at concentrations which may cause driving impairment. It was concluded that analysis of alcohol only might often be insufficient in A-cases to reveal driving impairment.  相似文献   

3.
The Ephedra plant has been identified as an excellent source of ephedrine and pseudoephedrine, both of which can be chemically reduced to form the widely abused illicit drug methamphetamine. Ephedra contains several additional alkaloids that undergo analogous reductions to form amphetamine and N,N-dimethylamphetamine (also drugs of abuse). The main alkaloids obtained from the Ephedra plant have been reduced using four common methods used by the clandestine operator. The intermediates and byproducts of these reductions have been identified and/or tentatively assigned and the mechanism of formation discussed.  相似文献   

4.
Methamphetamine (MA) is the most commonly abused drug in Korea, followed by cannabis. Traditionally, MA analysis is carried out on both urine and hair samples and cannabis analysis in urine samples only. Despite the fact that oral fluid has become increasingly popular as an alternative specimen in the field of driving under the influence of drugs (DUID) and work place drug testing, its application has not been expanded to drug analysis in Korea. Oral fluid is easy to collect and handle and can provide an indication of recent drug abuse.In this study, we present an analytical method using GC–MS to determine tetrahydrocannabinol (THC) and its main metabolite 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) in oral fluid. The validated method was applied to oral fluid samples collected from drug abuse suspects and the results were compared with those in urine. The stability of THC and THC-COOH in oral fluid stored in different containers was also investigated.Oral fluid specimens from 12 drug abuse suspects, submitted by the police, were collected by direct expectoration. The samples were screened with microplate ELISA. For confirmation they were extracted using automated SPE with mixed-mode cation exchange cartridge, derivatized and analyzed by GC-MS using selective ion monitoring (SIM).The concentrations of THC and THC-COOH in oral fluid showed a large variation and the results from oral fluid and urine samples from cannabis abusers did not show any correlation. Thus, detailed information about time interval between drug use and sample collection is needed to interpret the oral fluid results properly. In addition, further investigation about the detection time window of THC and THC-COOH in oral fluid is required to substitute oral fluid for urine in drug testing.  相似文献   

5.
A study was performed to acquire urine, serum and oral fluid samples in cases of suspected driving under the influence of drugs of abuse. Oral fluid was collected using a novel sampling/testing device (Dr?ger DrugTest System). The aim of the study was to evaluate oral fluid and urine as a predictor of blood samples positive for drugs and impairment symptoms. Analysis for cannabinoids, amphetamine and its derivatives, opiates and cocaine was performed in urine using the Mahsan Kombi/DOA4-test, in serum using immunoassay and gas chromatography-mass spectrometry (GC-MS) confirmation and in oral fluid by GC-MS. Police and medical officer observations of impairment symptoms were rated and evaluated using a threshold value for the classification of driving inability. Accuracy in correlating drug detection in oral fluid and serum were >90% for all substances and also >90% in urine and serum except for THC (71.0%). Of the cases with oral fluid positive for any drug 97.1% of corresponding serum samples were also positive for at least one drug; of drug-positive urine samples this were only 82.4%. In 119 of 146 cases, impairment symptoms above threshold were observed (81.5%). Of the cases with drugs detected in serum, 19.1% appeared not impaired which were the same with drug-positive oral fluid while more persons with drug-positive urine samples appeared uninfluenced (32.7%). The data demonstrate that oral fluid is superior to urine in correlating with serum analytical data and impairment symptoms of drivers under the influence of drugs of abuse.  相似文献   

6.
The authors suggest use of the fluorescence polarization immunoassay (FPIA) technique in evaluation of chronic drug abuse using human hair. Hair was decontaminated in 5 mL of ethanol for 15 min at 37 degrees C and then incubated in 3 mL of 1M sodium hydroxide (NaOH) for 1 h at 100 degrees C. Afterwards, the aliquots were neutralized and analyzed using Abbott ADx for a negative or positive response for the following drugs: benzodiazepines, barbiturates, antidepressants, opiates, cocaine, amphetamine, and cannabis. All the positive samples were confirmed by gas chromatography/mass spectrometry (GC/MS). Only one false positive was detected (caused by interference of a phenothiazine with the antidepressants kit), clearly demonstrating the capability of ADx for toxicological screening of human hair.  相似文献   

7.
The optical crystallographic or microcrystalline properties of the diliturate derivatives (5-nitrobarbituric acid) of the most used psychedelic amphetamine drugs have been determined. The crystallographic properties, especially the orthographic projection drawings and photomicrography of the crystals and other optical crystallographic data, such as the indices of refraction, extinction angles, and optical orientations serve to characterize and identify this group of drug chemicals. These data can be used with ultraviolet-infrared (UV-IR) spectroscopy, thin-layer chromatography and gas-liquid chromatography/mass spectrometry (GLC/MS) data for the identification and confirmation of psychedelic amphetamine drugs.  相似文献   

8.
Although there are many roadside testing devices available for the screening of abused drugs, none of them can be used for the detection of ketamine, a popular abused drug in Hong Kong. In connection to local drug driving legislation, effective roadside detection of ketamine in suspected drug-impaired drivers has to be established. According to the drug evaluation and classification program (DEC), ketamine is classified in the phencyclidine (PCP) category. However, no study has been performed regarding the signs and symptoms exhibited by users under the influence of ketamine. In a study to develop a protocol for effective roadside detection of drug-impaired drivers, 62 volunteers exiting from discos were assessed using field impairment tests (FIT) that included measurements of three vital signs (i.e. body temperature, pulse rate and blood pressure), three eye examinations [pupil size, lack of convergence (LOC) and horizontal gaze nystagmus (HGN)] and four divided attention tests (Romberg, one-leg stand, finger-to-nose and walk-and-turn tests). Subsequent laboratory analysis of oral fluid and urine samples from the participants revealed the presence of common abused drugs in both the urine and oral fluid samples of 55 subjects. The remaining 7 subjects with no drug in their oral fluid samples were used as drug-free subjects. In addition, 10 volunteers from the laboratory who were regarded as drug-free subjects were also assessed using the same FIT. Among the 62 volunteers, 39 of them were detected with ketamine in their oral fluid. Of these ketamine users, 21 of them (54%) with only ketamine found in their oral fluid samples while the rest (18 subjects) of them had other drugs (i.e. MA, MDMA, benzodiazepines and/or THC) in addition to ketamine. Of the 21 ketamine-only users, 15 of them (71%) were successfully identified by FIT. It was found that when salivary ketamine concentrations were greater than 300 ng/mL, signs of impairment became evident, with over 90% detection rate using the FIT. By comparing the FIT observations on the 21 ketamine-only users with the drug-free subjects, the typical signs and symptoms observable for subjects under the influence of ketamine included LOC, HGN, elevated pulse rate and in general, failing the divided attention tests, especially the walk-and-turn and one-leg stand.  相似文献   

9.
In mid 2009 Victoria introduced compulsory drug testing of blood taken from all injured drivers taken to hospital. Δ(9)-Tetrahydrocannabinol (THC), methylamphetamine (MA) and 3,4-methylenedioxy-methylamphetamine (MDMA) are prohibited and if drivers are positive to any amount an automatic penalty is enforced. Laboratory screens were conducted on preserved blood using ELISA testing for cannabis metabolite and methylamphetamines and a fully validated LC-MS/MS method for 105 drugs including THC, amphetamines, opioids, benzodiazepines, antidepressants and antipsychotics and a number of other psychoactive substances using a minimum of two transitions per drug. Conventional GC-testing for ethanol was used to screen and quantify the presence of alcohol. 1714 drivers were tested and showed alcohol in 29% (≥ 0.01 g/100mL) and drugs in 35%. The positive rate for the three drugs prohibited by legislation was 12.5%. The prevalence of THC, MA and MDMA was 9.8%, 3.1%, and 0.8%, respectively. The range of THC concentrations in blood was 2-42 ng/mL (median 7) of which 70% had a concentration of 10 ng/mL or higher. The range of concentrations for MA and MDMA was 0.02-0.4 and 0.03-0.3mg/L (median for both drugs was 0.05 mg/L). Drugs of any type were detected in 35% of cases. The other drugs were largely prescribed drugs such as the antidepressants (9.3%) and benzodiazepines (8.9%). Neither 6-acetylmorphine nor cocaine (or benzoylecgonine) was detected in these cases.  相似文献   

10.
《Science & justice》2014,54(1):57-60
Exhaled breath is being developed as a possible specimen for drug testing based on the collection of aerosol particles originating from the lung fluid. The present study was aimed to evaluate the applicability of exhaled breath for drugs of abuse testing in criminal justice settings. Particles in exhaled breath were collected with a new device in parallel with routine urine testing in two Swedish prisons, comprising both genders. Urine screening was performed according to established routines either by dipstick or by immunochemical methods at the Forensic Chemistry Laboratory and confirmations were with mass spectrometry methods. A total of 247 parallel samples were studied. Analysis of exhaled breath samples was done with a sensitive mass spectrometric method and identifications were made according to forensic standards. In addition tested subjects and personnel were asked to fill in a questionnaire concerning their views about drug testing. In 212 cases both the urine and breath testing were negative, and in 22 cases both urine and breath were positive. Out of 6 cases where breath was negative and urine positive 4 concerned THC. Out of 7 cases where, breath was positive and urine negative 6 concerned amphetamine. Detected substances in breath comprised: amphetamine, methamphetamine, THC, methylphenidate, buprenorphine, 6-acetylmorphine, cocaine, benzoylecgonine, diazepam and tramadol. Both the prison inmates and staff members reported breath testing to be preferable due to practical considerations. The results of this study documented that drug testing using exhaled breath provided as many positives as urine testing despite an expected shorter detection window, and that the breath sampling procedure was well accepted and provided practical benefits reported both by the prison inmates and testing personnel.  相似文献   

11.
A Raman spectroscopy method for determining the drug content of street samples of amphetamine was developed by dissolving samples in an acidic solution containing an internal standard (sodium dihydrogen phosphate). The Raman spectra of the samples were measured with a CDD-Raman spectrometer. Two Raman quantification methods were used: (1) relative peak heights of characteristic signals of the amphetamine and the internal standard; and (2) multivariate calibration by partial least squares (PLS) based on second derivative of the spectra. For the determination of the peak height ratio, the spectra were baseline corrected and the peak height ratio (h(amphetamine at 994 cm(-1) )/h(internal standard at 880 cm(-1) )) was calculated. For the PLS analysis, the wave number interval of 1300-630 cm(-1) (348 data points) was chosen. No manual baseline correction was performed, but the spectra were differentiated twice to obtain their second derivatives, which were further analyzed. The Raman results were well in line with validated reference LC results when the Raman samples were analyzed within 2 h after dissolution. The present results clearly show that Raman spectroscopy is a good tool for rapid (acquisition time 1 min) and accurate quantitative analysis of street samples that contain illicit drugs and unknown adulterants and impurities.  相似文献   

12.
Amphetamine its methylendioxy (methylendioxyamphetamine methylenedioxymethylamphetamine, methylenedioxyethylamphetamine) and methoxy derivatives (p-methoxyamphetamine and p-methoxymethylamphetamine) are widely abused in Spanish society. We present here the results of a systematic study of all cases of deaths brought to the attention of the Madrid department of the Instituto Nacional de Toxicologia from 1993 to 1995 in which some of these drugs have been found in the cadaveric blood. The cases were divided into three categories: amphetamine and derivatives, amphetamines and alcohol, amphetamines and other drugs. Data on age, sex, clinical symptoms, morphological findings, circumstances of death, when known, and concentration of amphetamine derivatives, alcohol and other drugs in blood are given for each group. The information provided here may prove to be useful for the forensic interpretation of deaths which are directly or indirectly related to abuse of amphetamine derivatives.  相似文献   

13.
Testing for drugs in oral fluid is a convenient procedure for determining recent drug use. A number of issues are still to be resolved and this paper investigates the effects of storage systems on drug stability and recovery using three different collection devices supplied by Cozart, Immunalysis and Microgenics (third party). Drugs were analysed using a range of immunoassay systems followed by MS confirmation and quantitation. The reproducibility of the weight of specimen collected was excellent (CV<10%) for the three collection devices tested. Of the three systems studied, only the Cozart product gave acceptable recovery of THC from drug-spiked oral fluid. A combination of Cozart, Immunalysis and Diagnostix immunoassays with the Cozart collection system gave the most sensitive and discriminating screening assays for the drugs studied, namely THC, benzodiazepines, methamphetamine and morphine. Storage at either 5 degrees C or room temperature had no significant effect on drug recoveries.  相似文献   

14.
胶体金标记检测大麻单克隆抗体免疫试剂盒研制   总被引:2,自引:0,他引:2  
目的 建立准确、快速、简便的检测尿液中大麻的胶体金免疫层析技术(ICT)。方法 采用柠檬酸三钠还原法制备胶体金颗粒,标记抗主要代谢物四氢大麻酚-9-羧酸,THC与GC/MS检测方法相比,用ICT法的216份尿样,其检测限为50 ng/ml,灵敏度为96.67%,准确性为98.61%。结论 ICT法检测尿液中THC,其特异性强,对确定大麻的存在具有广泛的应用价值。  相似文献   

15.
In this study we reviewed the post-mortem cases in the years 1999-2004 that were presented at the Netherlands Forensic Institute. The concentrations of amphetamine-based drugs in femoral blood from cases of suspected unnatural death were compared with concentrations in whole blood from non-fatal cases of driving under the influence (DUI cases) and with literature. Furthermore, the combinations with other drugs and/or alcohol were investigated. Amphetamine-based drugs were present in 70 post-mortem cases and 467 DUI cases. The most detected amphetamine-based drug was MDMA, followed by amphetamine. The presence of MDA could usually be explained by metabolism of MDMA. Methamphetamine and MDEA were rarely present. Frequently, the amphetamine-based drugs were taken in combination with alcohol and/or other non-amphetamine-based drugs such as cocaine or cannabinoids. The 70 post-mortem cases were divided into 38 amphetamine-based drug caused (i.e. the amphetamine-based drug directly caused or contributed to the death) and 32 amphetamine-based drug related deaths (i.e. death was not directly caused by the amphetamine-based drug). In the latter category, other (poly)drug intoxications and death by violence or drowning were the most frequent causes of death. In 30 cases, MDMA caused death directly. The range in blood concentrations of MDMA in these cases was substantial, i.e. 0.41-84 mg/L with a median concentration of 3.7 mg/L (n=30). MDMA blood concentrations in the MDMA related deaths (n=20) and in the DUI cases (n=360) varied up to 3.7 and 4.0 mg/L, respectively. Seven victims died from the direct effects of amphetamine; the blood concentration of amphetamine ranged from 0.24 to 11.3 mg/L, with a median concentration of 1.7 mg/L (n=7). The median concentrations of amphetamine in the amphetamine related deaths (n=13) and the DUI cases (n=208) were much lower, i.e. 0.28 and 0.22 mg/L, respectively. Amphetamine blood concentrations up to 6.0 and 2.3 mg/L were seen in the drug related deaths and DUI cases, respectively. The most frequently encountered amphetamine-based drugs in the investigated deaths were MDMA and amphetamine. The majority of MDMA- and amphetamine-caused deaths, i.e. 90% of these deaths, occurred with blood concentrations above 1.5 and 0.80 mg/L, respectively. MDMA and amphetamine blood concentrations in drug related deaths and DUI cases, however, overlap the range of fatal concentrations. Therefore, MDMA or amphetamine concentrations should never be used alone to establish the cause of death.  相似文献   

16.
Hair testing for drugs of abuse is performed in Lombardy by eleven analytical laboratories accredited for forensic purposes, the most frequent purposes being driving license regranting and workplace drug testing. Individuals undergoing hair testing for these purposes can choose the laboratory in which the analyses have to be carried out. The aim of our study was to perform an interlaboratory exercise in order to verify the level of standardization of hair testing for drugs of abuse in these accredited laboratories; nine out of the eleven laboratories participated in this exercise. Sixteen hair strands coming from different subjects were longitudinally divided in 3-4 aliquots and distributed to participating laboratories, which were requested to apply their routine methods. All the participants analyzed opiates (morphine and 6-acetylmorphine) and cocainics (cocaine and benzoylecgonine) while only six analyzed methadone and amphetamines (amphetamine, methamphetamine, MDMA, MDA and MDEA) and five Δ(9)-tetrahydrocannabinol (THC). The majority of the participants (seven labs) performed acidic hydrolysis to extract the drugs from the hair and analysis by GC-MS, while two labs used LC-MS/MS. Eight laboratories performed initial screening tests by Enzyme Multiplied Immunoassay Technique (EMIT), Enzyme-linked Immunosorbent Assay (ELISA) or Cloned Enzyme Donor Immunoassay (CEDIA). Results demonstrated a good qualitative performance for all the participants, since no false positive results were reported by any of them. Quantitative data were quite scattered, but less in samples with low concentrations of analytes than in those with higher concentrations. Results from this first regional interlaboratory exercise show that, on the one hand, individuals undergoing hair testing would have obtained the same qualitative results in any of the nine laboratories. On the other hand, the scatter in quantitative results could cause some inequalities if any interpretation of the data is required.  相似文献   

17.
大麻是大麻科大麻属一年生雌雄异株的草本植物,其内含有具有强烈成瘾性和麻醉性的四氢大麻酚(THC).大麻价格低廉、获取方便、且受到一些国家和地区合法化的影响,目前已成为滥用最广泛的毒品之一.因此,大麻植株的鉴定对于打击毒品犯罪、维护社会稳定具有重要意义.近年来,基于DNA遗传标记的大麻鉴定为案件侦破提供了新的技术手段,针...  相似文献   

18.
目的建立一种准确、快速、简便的检测尿液中苯丙胺(AMP)的胶体金免疫层析技术。方法采用柠檬酸三钠还原法制备胶体金颗粒,标记抗AMP单抗,将AMP—BSA抗原固相于硝酸纤维素膜上,制备胶体金免疫层析测试条。通过尿液、血液和唾液中的可能存在的苯丙胺成分与测试条上的苯丙胺-BSA完全抗原竞争结合有限的单抗结合位点,来判定检测结果。结果用ICT法和GC/MS检测217份尿样,本法检测阈值为1000ng/mL,特异性为99.17%,准确性为99.54%。结论ICT法检测尿液中的AMP特异性强,灵敏度高、简便快速、无需特殊仪器设备,具有广泛应用价值。  相似文献   

19.
A fast and simple method to detect some commonly abused illicit drugs, amphetamine, methamphetamine, 3,4-methylendioxy-amphetamine (MDA), 3,4-methylendioxy-methamphetamine (MDMA), 3,4-methylendioxy-N-ethylamphetamine (MDEA) and phencyclidine (PCP) in urine using solvent microextraction (SME) combined with gas chromatography (GC) analysis has been developed. The extraction is conducted by suspending a 2 microl drop of chloroform in a 2 ml urine sample. Following 8 min of extraction, the organic solvent is withdrawn into the syringe and injected into a GC with a pulsed discharge helium ionization detector (PDHID). The effects of different extraction solvents and times, pH and sample preparation were studied. The optimized method was capable of detecting drugs in urine at concentrations below Substance Abuse and Mental Health Services Administration (SAMHSA) established cut-off values for preliminary testing. Good linearity and reproducibility of extraction were obtained. The limits of detection were 0.5 microg/ml for amphetamine, 0.1 microg/ml for methamphetamine and MDA, 0.05 microg/ml for MDMA, 0.025 microg/ml for MDEA and 0.015 microg/ml for PCP. Relative standard deviation (R.S.D.) values ranged between 5 and 20% for the studied drugs.  相似文献   

20.
A laboratory study interested in the analysis of human hair for drugs-of-abuse was conducted to determine if drugs could be detected and quantified from hair. Supercritical fluid extraction (SFE) techniques followed by GC-MS analysis were applied to extract amphetamines from hair. The group of amphetamines included methylenedioxyamphetamine (MDA), methylenedioxymetamphetamine (MDMA), methylenedioxyethylamphetamine (MDEA) and internal standard mephentermine (MP). To validate information on amphetamine use in hair, powdered hair samples free from drugs were collected and soaked in a known amphetamine standard solution. Authentic fortified case hair samples taken from known drug users known to have consumed amphetamines were also analyzed for amphetamine. Results from this study show that amphetamine use can be detected in spiked and authentic fortified human hair using SFE techniques for qualitative and quantitative reproducible results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号