首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Fifty-three head hair specimens were collected from 38 males with a history of cannabis use documented by questionnaire, urinalysis and controlled, double blind administration of delta9-tetrahydrocannabinol (THC) in an institutional review board approved protocol. The subjects completed a questionnaire indicating daily cannabis use (N=18) or non-daily use, i.e. one to five cannabis cigarettes per week (N=20). Drug use was also documented by a positive cannabinoid urinalysis, a hair specimen was collected from each subject and they were admitted to a closed research unit. Additional hair specimens were collected following smoking of two 2.7% THC cigarettes (N=13) or multiple oral doses totaling 116 mg THC (N=2). Cannabinoid concentrations in all hair specimens were determined by ELISA and GCMSMS. Pre- and post-dose detection rates did not differ statistically, therefore, all 53 specimens were considered as one group for further comparisons. Nineteen specimens (36%) had no detectable THC or 11-nor-9-carboxy-THC (THCCOOH) at the GCMSMS limits of quantification (LOQ) of 1.0 and 0.1 pg/mg hair, respectively. Two specimens (3.8%) had measurable THC only, 14 (26%) THCCOOH only, and 18 (34%) both cannabinoids. Detection rates were significantly different (p<0.05, Fishers' exact test) between daily cannabis users (85%) and non-daily users (52%). There was no difference in detection rates between African-American and Caucasian subjects (p>0.3, Fisher's exact test). For specimens with detectable cannabinoids, concentrations ranged from 3.4 to >100 pg THC/mg and 0.10 to 7.3 pg THCCOOH/mg hair. THC and THCCOOH concentrations were positively correlated (r=0.38, p<0.01, Pearson's product moment correlation). Using an immunoassay cutoff concentration of 5 pg THC equiv./mg hair, 83% of specimens that screened positive were confirmed by GCMSMS at a cutoff concentration of 0.1 pg THCCOOH/mg hair.  相似文献   

2.
Low concentrations of THC and 11-hydroxy-THC in serum samples are often claimed not to result from recent cannabis use. Prediction of time of exposure is difficult, especially if distinctive features of drug use could not be observed. Therefore, the aim of the study was to investigate the presence of THC and 11-hydroxy-THC in serum samples as well as to obtain preliminary data on the analyte profile for a time window of 24-48 hours after discontinuation of cannabis smoking. Serum samples from heavy (n = 12, > 1 joint/day), moderate (n = 11, < or = 1 joint/day) and light (n = 6, < 1 joint/week) smokers of cannabis were analyzed for THC, 11-hydroxy-THC and free THC-COOH by GC/MS as well as for glucuronidated THC-COOH by LC/MS-MS. The blood samples were collected 24-48 hours after abstaining from cannabis use. Additionally, 8 specimens were obtained from persons after discontinuation of the drug for more than 48 hours. During collection of the blood samples, distinctive effects due to drug use could not be observed. For heavy users of cannabis, THC was detectable in 8 samples, and in 5 cases both biologically active compounds, THC and 11-hydroxy-THC, were present (1.3-6.4 ng THC/mL serum, 0.5-2.4 ng 11-hydroxy-THC/mL serum). Among moderate users, in 1 sample 1.8 ng THC/mL serum and 1.3 ng 11-hydroxy-THC/mL serum were determined, and another sample was tested positive with low concentrations close to the limit of detection. In serum samples of light users both analytes could not be detected, indicating that in those persons a positive finding of THC and 11-hydroxy-THC may rather result from recent consumption than from cannabis use 1 or 2 days prior to blood sampling. The concentrations of THC-COOH and its glucuronide covered a wide range in all groups of cannabis users. However, there was a trend to higher concentrations in heavy users compared to moderate users, and the mean concentration was smaller in light smokers than in moderate smokers. Overall, the findings indicated that data from pharmacokinetic studies should be supplemented by data obtained from "real-life" samples.  相似文献   

3.
Authentic hair samples from Cannabis users and a drug free hair sample which was separately spiked with tetrahydrocannabinol (THC), cannabidiol (CBD) or cannabinol (CBN) were exposed outside as well as to natural sunlight at prevailing and elevated humidity in quartz glass tubes during 8 weeks. In addition, authentic and spiked hair samples were exposed to xenon arc radiation in a light exposure cabinet for 24 hours. Stability of THC, CBD and CBN in authentic samples differed from that of the spiked hair. The radiation experiment revealed that CBN could not be measured in hair which had been spiked with THC. Under all conditions chosen the concentrations of THC, CBD and CBN decreased. At high humidity the concentrations declined more rapidly. In both authentic and spiked samples THC was most unstable compared to CBD and CBN. Therefore, in hair analysis determination of CBD and CBN seems promising to detect Cannabis exposure even under unfavorable conditions.  相似文献   

4.
《Science & justice》2014,54(6):421-426
The confirmation of Δ9-tetrahydrocannabinol (THC) in oral fluid (OF) is an important issue for assessing Driving Under the Influence of Drugs (DUID). The aim of this research was to develop a highly sensitive method with minimal sample pre-treatment suitable for the analysis of small OF volumes (100 μL) for the confirmation of cannabinoids in DUID cases. Two methods were compared for the confirmation of THC in residual OF samples, obtained from a preliminary on-site screening with commercial devices. An ultra high performance LC–MS (UHPLC–MS/MS) method and an SPME–GC/MS method were hence developed. 100 μL of the residual mixture OF/preservative buffer or neat OF was simply added to 10 μL of THC-D3 (1 μg/mL) and submitted to the two different analyses: A — direct injection of 10 μL in UHPLC–MS/MS in positive electrospray ionisation (ESI) mode and B — sampling for 30 min with SPME (100 μm polydimethylsiloxane or PDMS fibre) and direct injection by desorption of the fibre in the GC injection port.The lowest limit of detection (LLOD) of THC was 2 ng/mL in UHPLC–MS/MS and 0.5 ng/mL in SPME–GC/MS. In addition, cannabidiol (CBD) and cannabinol (CBN) could be detected in GC/MS equipment at 2 ng/mL, whilst in UHPLC–MS/MS the LLOD was 20 ng/mL.Both methods were applied to 70 samples coming from roadside tests. By SPME–GC/MS analysis, THC was confirmed in 42 samples, whilst CBD was detected in 21 of them, along with CBN in 14 samples. THC concentrations ranged from traces below the lowest limit of quantification or LLOQ (2 ng/mL) up to 690 ng/mL.  相似文献   

5.
目的 建立同时检测头发中△9-四氢大麻酚(THC)、大麻酚(CBN)、大麻二酚(CBD)和△9-四氢大麻酸(THC-COOH)的分析方法.方法头发样品加入氘代内标△9-四氢大麻酸(THC-COOH-d3),经碱水解后,以混合溶剂[V(正己烷)∶V(乙酸乙酯=9∶1]进行提取,吹干,残留物经双(三甲基硅烷基)三氟乙酰胺(BSTFA)衍生化,用GC-MS/MS方法进行分析.结果 头发中THC-COOH、THC、CBN和CBD的最低检出限分别为4、4、10和20 pg· mg-1,各化合物在0.04~5ng· mg-1呈良好的线性关系(r>0.999),方法精密度、准确度均符合要求.结论本方法选择性强、灵敏度高,适用于头发中CBD、CBN、THC及其代谢物THC-COOH的分析,并成功应用于实际案例中.  相似文献   

6.
Hair analysis has shown great potential in the detection and control of drug use. Whether an assay is of quantitative value roughly corresponding to the amount of drug consumed, is still a matter of debate. The present investigation was aimed at a possible relationship between the cannabinoid concentration in hair and the cumulative dose in regular users of cannabis. Hair samples from the vertex region of the scalp were obtained from 12 male regular users of cannabis, and 10 male subjects with no experience of cannabis served as controls. None of the subjects had his hair permed, bleached or colored. Cannabis users provided information on drug use such as the current cannabis dose per day, the cumulative cannabis dose of the last 3 months, as well as the frequency of cannabis use during the last year. The concentration of delta-9-tetrahydrocannabinol (THC), cannabinol (CBN) and cannabidiol (CBD) in hair was determined using gas chromatography-mass spectrometry. Cannabinoids were present in any hair sample of cannabis users, but were not detectable in control specimens. An increase in the amount of cannabinoids in hair with increasing dose was evident. The concentration of major cannabinoids (sum of THC, CBD and CBN) was significantly correlated to either the reported cumulative cannabis dose during the last 3 months or to the cannabis use during the last 3 months estimated from the daily dose and the frequency per year (r=0.68 or 0.71, p=0.023 or 0.014). A significant relationship between THC and the amount of cannabis used could not be established. As a conclusion, the sum of major cannabinoids in hair of regular users may provide a better measure of drug use than THC.  相似文献   

7.
The Thai government has recognized the possibility for legitimate cultivation of hemp. Further study of certain cannabinoid characteristics is necessary in establishing criteria for regulation of cannabis cultivation in Thailand. For this purpose, factors affecting characteristics of cannabinoids composition of Thai-grown cannabis were investigated. Plants were cultivated from seeds derived from the previous studies under the same conditions. 372 cannabis samples from landraces, three different trial fields and seized marijuana were collected. 100g of each sample was dried, ground and quantitatively analyzed for THC, CBD and CBN contents by GC-FID. The results showed that cannabis grown during March-June which had longer vegetative stages and longer photoperiod exposure, had higher cannabinoids contents than those grown in August. The male plants grown in trial fields had the range of THC contents from 0.722% to 0.848% d.w. and average THC/CBD ratio of 1.9. Cannabis in landraces at traditional harvest time of 75 days had a range of THC contents from 0.874% to 1.480% d.w. and an average THC/CBD ratio of 2.6. The THC contents and THC/CBD ratios of cannabis in second generation crops grown in the same growing season were found to be lower than those grown in the first generation, unless fairly high temperatures and a lesser amount of rainfall were present. The average THC content in seized fresh marijuana was 2.068% d.w. while THC/CBD ratios were between 12.6 and 84.09, which is 10-45 times greater than those of similar studied cannabis samples from the previous study. However, most Thai cannabis in landraces and in trial fields giving a low log(10) value of THC/CBD ratio at below 1 may be classified as intermediate type, whereas seized marijuana giving a higher log(10) value at above 1 could be classified as drug type. Therefore, the expanded information provided by the current study will assist in the development of criteria for regulation of hemp cultivation in Thailand.  相似文献   

8.
Saliva or "oral fluid" has been presented as an alternative matrix to document drug use. The non-invasive collection of a saliva sample, which is relatively easy to perform and can be achieved under close supervision, is one of the most important benefits in a driving under the influence situation. Moreover, the presence of Delta9-tetrahydrocannabinol (THC) in oral fluid is a better indication of recent use than when 11-nor-Delta9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) is detected in urine, so there is a higher probability that the subject is experiencing pharmacological effects at the time of sampling. In the first part of the study, 27 drug addicts were tested for the presence of THC using the OraLine IV s.a.t. device to establish the potential of this new on-site DOA detection technique. In parallel, oral fluid was collected with the Intercept DOA Oral Specimen Collection device and tested for THC by gas chromatography mass spectrometry (GC/MS) after methylation for THC (limit of quantification: 1 ng/mL). The OraLine device correctly identified nine saliva specimens positive for cannabis with THC concentrations ranging from 3 to 265 ng/mL, but remained negative in four other samples where low THC concentrations were detected by GC/MS (1-13 ng/mL). One false positive was noted. Secondly, two male subjects were screened in saliva using the OraLine and Intercept devices after consumption of a single cannabis cigarette containing 25mg of THC. Saliva was first tested with the OraLine device and then collected with the Intercept device for GC/MS confirmation. In one subject, the OraLine on-site test was positive for THC for 2 h following drug intake with THC concentrations decreasing from 196 to 16 ng/mL, while the test remained positive for 1.5 h for the second subject (THC concentrations ranging from 199 to 11 ng/mL). These preliminary results obtained with the OraLine IV s.a.t. device indicate more encouraging data for the detection of THC using on-site tests than previous evaluations.  相似文献   

9.
Methamphetamine (MA) is the most commonly abused drug in Korea, followed by cannabis. Traditionally, MA analysis is carried out on both urine and hair samples and cannabis analysis in urine samples only. Despite the fact that oral fluid has become increasingly popular as an alternative specimen in the field of driving under the influence of drugs (DUID) and work place drug testing, its application has not been expanded to drug analysis in Korea. Oral fluid is easy to collect and handle and can provide an indication of recent drug abuse.In this study, we present an analytical method using GC–MS to determine tetrahydrocannabinol (THC) and its main metabolite 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) in oral fluid. The validated method was applied to oral fluid samples collected from drug abuse suspects and the results were compared with those in urine. The stability of THC and THC-COOH in oral fluid stored in different containers was also investigated.Oral fluid specimens from 12 drug abuse suspects, submitted by the police, were collected by direct expectoration. The samples were screened with microplate ELISA. For confirmation they were extracted using automated SPE with mixed-mode cation exchange cartridge, derivatized and analyzed by GC-MS using selective ion monitoring (SIM).The concentrations of THC and THC-COOH in oral fluid showed a large variation and the results from oral fluid and urine samples from cannabis abusers did not show any correlation. Thus, detailed information about time interval between drug use and sample collection is needed to interpret the oral fluid results properly. In addition, further investigation about the detection time window of THC and THC-COOH in oral fluid is required to substitute oral fluid for urine in drug testing.  相似文献   

10.
The 4- Aminophenol (4-AP) colorimetric test is a fast, easy-to-use, and cost-effective presumptive assay of cannabis plant material producing different chromophores with THC-rich cannabis (blue color) and with CBD-rich cannabis (pink color). The main drawback of the 4-AP test is a brief observation window where the color rapidly changes to black, limiting the utility of the test. We now report for the first time, the identification of the product chromophores between 4-AP and CBD/THC as well as propose an explanation and a solution for the color degradation of the chromophores. The identification of the chromophores is provided by spectroscopic (UV–Vis), chromatography, and mass spectrometry (TLC and LC-QToF-MS). Oxidation of excess 4-AP (Reagent A) in the presence of NaOH (Reagent B) produces the black color observed for the previously reported 4-AP tests and reported in the literature. The adjustment of reactants concentrations and volumes of 4-AP:THC/CBD to a 1:1 ratio significantly reduces the black oxidation by-product and increases the observation window up to 2 h instead of the previously reported 5–10 min. For the first time, mass spectrometry and chromatography confirmed that the reaction of THC and CBD with 4-AP produced chromophores with m/z (M + H) = 420, consistent with proposed indophenol structures. The TLC method developed confirmed the separation between CBD and THC chromophores. The specificity of the test is also reported, showing false positive results for the presence of THC (blue color) for samples of thyme and oregano. LDA and SIMCA models showed that the optimized 4-AP procedure performs better than the previously reported 4-AP color test.  相似文献   

11.
Postmortem ethyl glucuronide (EtG) concentrations in rib bone marrow, liver, muscle, fat tissue, urine, blood and bile have been determined by LC-MS/MS. Samples have been taken from twelve corpses during autopsies. In nine corpses EtG could be detected, corresponding blood ethanol concentrations (BAC) were 0.04-0.37 g%. In three cases, no EtG was found; two of these cases showed postmortem BACs - possibly due to putrefaction - of 0.01 and 0.1g%. In rib bone marrow, which is easily accessible during autopsy, EtG concentrations (0.77-9.36 microg/g) have been lower than in blood (2.24-20.46 microg/mL) in eight of nine cases and comparable or higher than in muscle tissue. Therefore, rib bone marrow has been found suitable as matrix for EtG determination. The highest EtG concentrations have been found in urine in all but one case, where the resorption of ethanol had been incomplete. Second highest EtG concentrations have been detected in liver samples. In two cases with putrefaction, EtG could not be detected. In these cases, the detectable ethanol might have been produced partially or in total by postmortem fermentation. However, instability of EtG during putrefaction cannot be totally excluded which might result in a total loss of EtG.  相似文献   

12.
A comprehensive epidemiological study of the involvement of cannabis and ethanol in motor vehicle fatalities in the Province of Ontario, Canada, is described. The study is based on toxicological analyses of blood and, when available, urine specimens. Ethanol was determined by headspace gas chromatography (GC). For cannabis, the methods employed were radioimmunoassays (RIAs) for screening and gas chromatography/mass spectrometry (GC/MS) for the determination of delta-9-tetrahydrocannabinol (THC) in blood. The study sample consisted of 1169 drivers and 225 pedestrians. THC was detected in the blood of 127 driver victims (10.9%) in concentrations ranging from 0.2 to 37 ng/mL, with a mean of 3.1 +/- 5.0 ng/mL. Ethanol was found in 667 driver victims (57.1%), in concentrations ranging from 9 to 441 mg/100 mL, with a mean of 165.8 +/- 79.5 mg/100 mL. For pedestrians, the incidence of THC and ethanol in the blood was 7.6 and 53.3%, respectively. The incidence of THC in the driver victims in this study constitutes an approximately threefold increase over the results of an Ontario study completed in 1979. At least a part of the increase may be attributed to interstudy differences in analytical methodology for cannabinoids.  相似文献   

13.
This article reports the outcome of gas chromatography/tandem mass spectrometry confirmations for THC and carboxy-THC on 93 hair samples screened by RIA for cannabinoids. The samples were taken from probationers in Pinellas County, FL, who voluntarily provided the research staff with six hair and six urine specimens, collected at 1-month intervals. There were 40 samples that were RIA (+), urinalysis (−). Samples were selected which had cannabinoid (+) outcomes for hair, urine, or both. The THC and/or the carboxy-THC was (+) on confirmation. Of these 40 samples, 22 were (+) for both THC and carboxy-THC, 15 were (+) for THC but not carboxy-THC, and three were carboxy THC (+), but THC (−). Only one sample had a (+) RIA, but was (−) for both THC and carboxy-THC on confirmation. RIA detection of cannabinoids was confirmed in nearly all cases. Most cases that were RIA (−) but urine (+) were cannabinoid (+) when analyzed by GC/MS/MS.  相似文献   

14.
Gas chromatography was used to study the cannabinoid content ("potency") of illicit cannabis seized by police in England in 2004/5. Of the four hundred and fifty two samples, indoor-grown unpollinated female cannabis ("sinsemilla") was the most frequent form, followed by resin (hashish) and imported outdoor-grown herbal cannabis (marijuana). The content of the psychoactive cannabinoid delta 9-tetrahydrocannabinol (THC) varied widely. The median THC content of herbal cannabis and resin was 2.1% and 3.5%, respectively. The median 13.9% THC content of sinsemilla was significantly higher than that recorded in the UK in 1996/8. In sinsemilla and imported herbal cannabis, the content of the antipsychotic cannabinoid cannabidiol (CBD) was extremely low. In resin, however, the average CBD content exceeded that of THC, and the relative proportions of the two cannabinoids varied widely between samples. The increases in average THC content and relative popularity of sinsemilla cannabis, combined with the absence of the anti-psychotic cannabinoid CBD, suggest that the current trends in cannabis use pose an increasing risk to those users susceptible to the harmful psychological effects associated with high doses of THC.  相似文献   

15.
Four hundred forty-nine fresh cannabis plants and 26 fruiting tops harvested in Jutland (Denmark) from July to September 1988 were characterized according to weight, height, marihuana yield, and cannabinoid content. The median weights were 308 g and 584 g for plants grown outdoors (n = 418) and in greenhouses (n = 31), respectively. The average marihuana yield was 8.7% for the plants grown outdoors and slightly lower for the greenhouse plants. Great variations, however, were seen both between and within the individual harvests. The mean concentration of total THC (tetrahydrocannabinol) was 0.87% for the plants grown outdoors. An increase according to the month of harvest was observed. For plants grown in greenhouses the mean value of total THC was 1.35%, while the mean concentration of fruiting tops was 2.13%. All plants contained cannabidiol (CBD), but only negligible concentrations of other cannabinoids. In approximately 80% of the plants the THC content was higher than the CBD content (drug type), while the rest either contained equal concentrations (intermediate type) or most CBD (fiber type).  相似文献   

16.
A new procedure for the simultaneous detection of delta-9-tetrahydrocannabinol (THC) and its major metabolite, 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (THC-COOH) in serum has been evaluated. The method combines rapid, efficient, solid-phase extraction and simple derivatization by methylation. Analysis and quantitation is performed by gas chromatography/mass spectrometry (GC/MS) using deuterated cannabinoids as internal standards (IS). Reproducibility and sensitivity of the method are good. The procedure is applied to serum specimens collected from a smoking study with 24 volunteers and 212 forensic cases. Results are interpreted based upon the current knowledge about THC metabolism and pharmacokinetics.  相似文献   

17.
An intoxication following administration of morphine, tramadol and atracurium in a suicide case is reported. The route of administration and the amount of the particular drug were known from the investigation of the death scene and the findings of the postmortem examination. Tramadol was present in the gastric contents as well as in blood, liver, kidney and brain samples, whereas the drug could not be detected in muscle. All body fluids and tissues investigated contained morphine as well as its 3- and 6-glucuronides with the exception of muscle tissue. The concentrations of morphine and its glucuronide metabolites were determined by LC/MS following solid phase extraction. Interestingly, the concentration of M6G in brain, liver and kidney were close to the concentration of M3G in the particular tissue. This phenomenon might be explained by a preferential hydrolysis of M3G or by a preferential formation of M6G postmortem. Measurement of morphine and M6G in femoral blood and cerebrospinal fluid may be a useful indicator in rapid deaths.  相似文献   

18.
This study presents a new animal model, the Large White Pig, which was tested for studying cannabinoids metabolism. The first step has focused on determination of plasma kinetics after injection of Delta(9)-tetrahydrocannabinol (THC) at different dosages. Seven pigs received THC by intravenous injections (50, 100 or 200 microg/kg). Plasma samples were collected during 48 h. Determination of cannabinoids concentrations were performed by gas chromatography/mass spectrometry. Results showed that plasma kinetics were comparable to those reported in humans. Terminal half-life of elimination was 10.6 h and a volume of distribution of 32 l/kg was calculated. In a second step, this model was used to determine the kinetic profile of cannabinoids distribution in tissues. Eight Large White male pigs received an injection of THC (200 microg/kg). Two pigs were sacrificed 30 min after injection, two others after 2, 6 and 24 h. Different tissues were sampled: liver, kidney, heart, lung, spleen, muscle, fat, bile, blood, vitreous humor and several brain areas. The fastest THC elimination was noted in liver tissue, where it was completely eliminated in 6 h. THC concentrations decreased in brain tissue slower than in blood. The slowest THC elimination was observed for fat tissue, where the molecule was still present at significant concentrations 24 h later. After 30 min, THC concentration in different brain areas was highest in the cerebellum and lowest in the medulla oblongata. THC elimination kinetics noted in kidney, heart, spleen, muscle and lung were comparable with those observed in blood. 11-Hydroxy-THC was only found at high levels in liver. THC-COOH was less than 5 ng/g in most tissues, except in bile, where it increased for 24 h following THC injection. This study confirms, even after a unique administration, the prolonged retention of THC in brain and particularly in fat, which could be at the origin of different phenomena observed for heavy users such as prolonged detection of THC-COOH in urine or cannabis-related flashbacks. Moreover, these results support the interest for this animal model, which could be used in further studies of distribution of cannabinoids in tissues.  相似文献   

19.
Oral fluid (OF) has become a popular specimen to test for presence of drugs, particularly in regards to road safety. In Victoria, OF specimens from drivers have been used to test for the presence of methylamphetamine (MA) and Δ(9)-tetrahydrocannabinol (THC) since 2003 and 3,4-methylenedioxy-N-methylamphetamine (MDMA) since 2006. LC-MS/MS has been used to test the most recent 853 submitted OF specimens from Victoria Police for 31 drugs of abuse including those listed in the Australian Standard AS4760-2006. At least one proscribed drug was detected in 96% of drivers, of which MA was the most common (77%), followed by THC (42%), MDMA (17%) and the combination of all three (3.9%). Opioids were detected in 14% of drivers of which 4.8% were positive for 6-acetylmorphine and 3.3% for methadone. The incidence of the opioids tramadol (1.2%) and oxycodone (1.1%) were relatively low. Cocaine (8.0%) was as commonly detected as benzodiazepines (8.0%), and was almost always found in combination with MA (7.9%). Samples positive to benzodiazepines were largely due to diazepam (3.5%) and alprazolam (3.4%), with only 0.2% of drivers combining the two. Ketamine was also detected in 1.5% of cases. While the incidences of the proscribed drugs itself are concerning, it is clear that many drivers are also using other drugs capable of causing impairment.  相似文献   

20.
A simple, rapid and relatively solventless method for extraction of objective compounds would be useful for forensic, judicial and clinical purposes. Solid phase micro-extraction membrane (SPMEM) is one such extraction technique that integrates sampling, extraction and concentration into a single step, and combines the advantages of both the solid phase micro-extraction (SPME) and membrane separation. In this study, a new kind of membrane was prepared using polyamide and Tenax compounds, and applied to solid phase micro-extraction. Characteristics of the membrane such as adsorption capacity were tested. Extraction conditions such as adsorption time, desorption solvents, desorption time and assisted desorption treatment methods were studied and optimized. Tetrahydrocannabinol (THC) and cannabidiol (CBD) in blood and brain of the injected male mice, and in spiked human urine were extracted using this solid phase micro-extraction membrane method. The extracted THC and CBD were further determined with LC-MS using APCI. Ions analyzed in single ion monitoring mode were 315 for THC and CBD, and 318 for the deuterated THC internal standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号