首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Three endangered Indian snake species, Python molurus, Naja naja, and Xenochrophis piscator are known to be significantly involved in illegal trade. Effective authentication of species is required to curb this illegal trade. In the absence of morphological features, molecular identification techniques hold promise to address the issue of species identification. We present an effective PCR–restriction fragment length polymorphism method for easy identification of the three endangered snake species, Python molurus, Naja naja, and Xenochrophis piscator. A 431‐bp amplicon from cytochrome b gene was amplified using novel snake‐specific primers following restriction digestion with enzymes Mbo II and Fok I. The species‐specific reference fragment patterns were obtained for the target species, which enabled successful identification of even highly degraded shed skin sample confirming the utility of the technique in case of poor‐quality DNA. The assay could be effectively used for forensic authentication of three Indian snake species and would help strengthen conservation efforts.  相似文献   

2.
Abstract:  The time required for short tandem repeat (STR) amplification is determined by the temperature ramp rates of the thermal cycler, the components of the reaction mix, and the properties of the reaction vessel. Multiplex amplifications in microfluidic biochip-based and conventional tube-based thermal cyclers have been demonstrated in 17.3 and 19 min, respectively. Optimized 28-cycle amplification protocols generated alleles with signal strengths above calling thresholds, heterozygous peak height ratios of greater than 0.65, and incomplete nontemplate nucleotide addition and stutter of less than 15%. Full CODIS-compatible profiles were generated using the Profiler Plus ID, COfiler and Identifiler primer sets. PCR performance over a wide range of DNA template levels from 0.006 to 4 ng was characterized by separation and detection on a microfluidic electrophoresis system, Genebench-FX. The fast multiplex PCR approach has the potential to reduce process time and cost for STR analysis and enables development of a fully integrated microfluidic forensic DNA analysis system.  相似文献   

3.
本文分析了降解DNA作PCR分型易失败的原因,提出了因小片断DNA过多,阻碍引物与膜机的复性及阻断引物延伸的新现点。将降解的DNA电泳,切除小片断DNA,电洗脱回收较大片断DNA,成功地对降解DNA进行了PCR分型.本方法简便、快速、有效。  相似文献   

4.
Mitragyna speciosa (MS), a plant commonly known as kratom, is a widely used “legal high” opiate alternative for pain relief. DNA extracted from MS and 26 additional plant species was amplified by PCR using primers targeting the strictosidine beta-D-glucosidase (SGD) and secologanin synthase 2 (SLS2) genes and detected by high-resolution melt curves using three intercalating dyes. Amplicon sizes were confirmed using agarose gel electrophoresis. The observed melt temperatures for SGD and SLS2 were 77.08 ± 0.38°C and 77.61 ± 0.46°C, respectively, using SYBR® Green I; 80.18 ± 0.27°C and 80.59 ± 0.08°C, respectively, using Radiant Green; and 82.19 ± 0.04°C and 82.62 ± 0.13°C, respectively, using the LCGreen® PLUS dye. The SLS2 primers demonstrated higher specificity and identified MS DNA at 0.05 ng/μL. In a duplex reaction, SLS2 and tetrahydrocannabinoic acid synthase gene primers detected and differentiated MS and Cannabis sativa (CS) by melt peaks at 82.63 ± 0.35°C and 85.58 ± 0.23°C, respectively, using LCGreen® PLUS.  相似文献   

5.
Abstract: Amplification of DNA from aged or degraded skeletal remains can be a challenging task, in part due to naturally occurring inhibitors of the polymerase chain reaction. PCR inhibitors may act by inactivating a polymerase itself, or compete with or bind other reaction components, although various polymerases may be differentially susceptible to such insult. In this study, ten thermostable polymerases from six bacterial species were examined for their ability to amplify DNA in the presence of bone‐derived or individual PCR inhibitors. Two polymerases, one from Thermus aquaticus and one from Thermus thermophilus, showed lower susceptibility to inhibition from bone, while polymerases from Thermus flavus were highly susceptible. Addition of bovine serum albumin improved the activity of most of the enzymes. Taken together, the results indicate that thermostable DNA polymerases have different susceptibility to bone‐derived PCR inhibitors, and that those most often used in forensic laboratories may not be optimal when working with DNA from skeletal remains.  相似文献   

6.
Several methods of denture marking have been described in the literature. However, most of them are expensive, time‐consuming, and do not permit the incorporation of large amounts of information. We propose a novel and simple method incorporating 2D codes which has several advantages over the existing methods. A 2D code was generated in the dental office and inserted into a maxillary denture. The code was then read using software downloaded into a mobile phone giving access to the website containing details about the patient. The denture was also subjected to durability tests, which did not hamper the efficacy of the 2D code. 2D coding for dentures is a simple, less expensive method with the potential of storing a large amount of information that can be accessed on‐site by the forensic investigator, thus allowing quick identification of the denture wearer.  相似文献   

7.
Molecular‐based approaches for biological source identification are of great interest in the forensic community because of a lack of sensitivity and specificity in current methods. MicroRNAs (miRNAs) have been considered due to their robust nature and tissue specificity; however, analysis requires a separate RNA extraction, requiring an additional step in the forensic analysis workflow. The purpose of this study was to evaluate miRNA detection in blood, semen, and saliva using DNA extraction methods commonly utilized for forensic casework. RT‐qPCR analysis revealed that the tested miRNAs were consistently detectable across most tested DNA extraction methods, but detection was significantly reduced compared to RNA extracts in some biological fluids. DNase treatment was not necessary to achieve miRNA‐specific results. A previously developed miRNA panel for forensic body fluid identification was evaluated using DNA extracts, and largely demonstrated concordance with results from samples deriving from RNA extracts of semen, blood, and saliva.  相似文献   

8.
Dipterous fly larvae (maggots) are frequently collected from a corpse during a criminal investigation. Previous studies showed that DNA analysis of the gastrointestinal contents of maggots might be used to reveal the identity of a victim. However, this approach has not been used to date in legal investigations, and thus its practical usefulness is unknown. A badly burned body was discovered with its face and neck colonized by fly larvae. Given the condition of the body, identification was not possible. Short tandem repeat (STR) typing was performed using the gastrointestinal contents of maggots collected from the victim and was compared to STR profiles obtained from the alleged father. The probability of paternity was 99.685%. Thus, this comparative DNA test enabled the conclusive identification of the remains. This is the first reported case of analysis of human DNA isolated from the gastrointestinal tract of maggots used to identify a victim in a criminal case.  相似文献   

9.
Abstract: We tested the hypotheses that foraging insects can acquire human DNA from the environment and that insect‐delivered human DNA is of sufficient quantity and quality to permit standard forensic analyses. Houseflies, German cockroaches, and camel crickets were exposed to dusty surfaces and then assayed for human mitochondrial and nuclear loci by conventional and qPCR, and multiplex STR amplification. Over two experiments, 100% of insect groups and 94% of dust controls tested positive for human DNA. Of 177 individuals, 33–67% tested positive and 13 yielded quantifiable human DNA (mean = 0.022 ± 0.006 ng; mean dust control = 2.448 ± 0.960 ng); four had at least one positive allele call for one or more locus; eight others showed multiple peaks at some loci. Results imply that application to routine forensic casework is limited given current detection methodology yet demonstrate the potential use of insects as environmental samplers for human DNA.  相似文献   

10.
Psilocybe cubensis, or “magic mushroom,” is the most common species of fungus with psychedelic characteristics. Two primer sets were designed to target Psilocybe DNA using web‐based software and NBCI gene sequences. DNA was extracted from eighteen samples, including twelve mushroom species, using the Qiagen DNeasy® Plant Mini Kit. The DNA was amplified by the polymerase chain reaction (PCR) using the primers and a master mix containing either a SYBR® Green I, Radiant? Green, or LCGreen Plus® intercalating dye; amplicon size was determined using agarose gel electrophoresis. The PCR assays were tested for amplifiability, specificity, reproducibility, robustness, sensitivity, and multiplexing with primers that target marijuana. The observed high resolution melt (HRM) temperatures for primer sets 1 and 7 were 78.85 ± 0.31°C and 73.22 ± 0.61°C, respectively, using SYBR® Green I dye and 81.67 ± 0.06°C and 76.04 ± 0.11°C, respectively, using Radiant? Green dye.  相似文献   

11.
Restriction fragment length polymorphism (RFLP) techniques were utilized in the forensic DNA community until the mid 1990s when less labor-intensive polymerase chain reaction short tandem repeat (PCR STR) techniques became available. During the transition from RFLP technology to PCR-based STR platforms, a method for comparing RFLP profiles to STR profiles was not developed. While the preferred approach for applying new technology to old cases would be to analyze the original biological stain, this is not always possible. For unsolved cases that previously underwent RFLP analysis, the only DNA remaining may be restriction cut and bound to nylon membranes. These studies investigate several methods for obtaining STR profiles from membrane bound DNA, including removal of bound DNA with bases, acids, detergents, various chemicals, and conventional cell extraction solutions. Direct multiplex STR amplification of template in the membrane-bound state was also explored. A partial STR profile was obtained from DNA that was recovered from an archived membrane using conventional extraction buffer components, indicating promise for recovering useful STR information from RFLP membranes that have been maintained in long-term frozen storage.  相似文献   

12.
CYP2D6 polymorphism analysis is gaining increasing interest in forensic pharmacogenetics. Nevertheless, DNA recovered from forensic samples could be of poor quality and not suitable for long polymerase chain reaction required to type CYP2D6 gene prior to SNaPshot minisequencing analysis performed to define alleles with different enzymatic activity. We developed and validated following the guidelines of the Scientific Working Group on DNA Analysis Methods a tetraplex PCR yielding four amplicons of 597, 803, 1142, and 1659 bp encompassing the entire CYP2D6 gene to analyze eleven SNP positions by SNaPshot minisequencing. Concordance, sensitivity, and specificity were assessed. The method, applied to thirty‐two forensic samples failed to amplify with long PCR, allowed the amplification of CYP2D6 gene in 62.5% of degraded samples. The new tetraplex PCR appears a suitable method for CYP2D6 analysis in forensic pharmacogenetics.  相似文献   

13.
A novel screening method for shed skin cells by detecting Staphylococcus epidermidis (S. epidermidis), which is a resident bacterium on skin, was developed. Staphylococcus epidermidis was detected using real‐time PCR. Staphylococcus epidermidis was detected in all 20 human skin surface samples. Although not present in blood and urine samples, S. epidermidis was detected in 6 of 20 saliva samples, and 5 of 18 semen samples. The ratio of human DNA to S. epidermidisDNA was significantly smaller in human skin surface samples than in saliva and semen samples in which S. epidermidis was detected. Therefore, although skin cells could not be identified by detecting only S. epidermidis, they could be distinguished by measuring the S. epidermidis to human DNA ratio. This method could be applied to casework touch samples, which suggests that it is useful for screening whether skin cells and human DNA are present on potential evidentiary touch samples.  相似文献   

14.
The human DNA quantification (H-Quant) system, developed for use in human identification, enables quantitation of human genomic DNA in biological samples. The assay is based on real-time amplification of AluYb8 insertions in hominoid primates. The relatively high copy number of subfamily-specific Alu repeats in the human genome enables quantification of very small amounts of human DNA. The oligonucleotide primers present in H-Quant are specific for human DNA and closely related great apes. During the real-time PCR, the SYBR Green I dye binds to the DNA that is synthesized by the human-specific AluYb8 oligonucleotide primers. The fluorescence of the bound SYBR Green I dye is measured at the end of each PCR cycle. The cycle at which the fluorescence crosses the chosen threshold correlates to the quantity of amplifiable DNA in that sample. The minimal sensitivity of the H-Quant system is 7.6 pg/microL of human DNA. The amplicon generated in the H-Quant assay is 216 bp, which is within the same range of the common amplifiable short tandem repeat (STR) amplicons. This size amplicon enables quantitation of amplifiable DNA as opposed to a quantitation of degraded or nonamplifiable DNA of smaller sizes. Development and validation studies were performed on the 7500 real-time PCR system following the Quality Assurance Standards for Forensic DNA Testing Laboratories.  相似文献   

15.
Abstract: A pilot study evaluated a computer‐based method for comparing digital dental images, utilizing a registration algorithm to correct for variations in projection geometry between images prior to a subtraction analysis. A numerical assessment of similarity was generated for pairs of images. Using well‐controlled laboratory settings, the method was evaluated as to its ability to identify the correct specimen with positive results. A subsequent clinical study examined longitudinal radiographic examinations of selected anatomical areas on 47 patients, analyzing the computer‐based method in making the correct identification based upon a threshold level of similarity. The results showed that at a threshold of 0.855, there were two false negative and two false positive identifications out of 957 analyses. Based on these initial findings, 25 dental records having two sets of full mouth series of radiographs were selected. The radiographs were digitized and grouped into six anatomical regions. The more recent set of films served as postmortem images. Each postmortem image was analyzed against all other images within the region. Images were registered to correct for differences in projection geometry prior to analysis. An area of interest was selected to assess image similarity. Analysis of variance was used to determine that there was a significant difference between images from the same individual and those from different individuals. Results showed that the threshold level of concordance will vary with the anatomical region of the mouth examined. This method may provide the most objective and reliable method for postmortem dental identification using intra‐oral images.  相似文献   

16.
Plant residue is currently an underutilized resource in forensic investigations despite the fact that many crime scenes, as well as suspects and victims, harbor plant‐derived residue that could be recovered and analyzed. Notwithstanding the considerable skill of forensic botanists, current methods of species determination could benefit from tools for DNA‐based species identification. However, DNA barcoding in plants has been hampered by sequence complications in the plant genome. Following a database search for usable barcodes, broad‐spectrum primers were designed and utilized to amplify and sequence the rbcL, trnL‐F, and rrn18 genetic loci from a variety of household plants. Once obtained, these DNA sequences were used to design species‐targeted primers that could successfully discriminate the source of plant residue from among the 21 species tested.  相似文献   

17.
Abstract: Human growth hormone (HGH) is a relatively small protein consisting of 191 amino acids and has an average mass of 22,125 amu. The forensic analysis of proteins such as HGH must meet the analytical sufficiency requirements for the laboratory and consists of a binary approach. A suspected sample is analyzed as the whole protein for retention time and mass determination using high performance liquid chromatography equipped with a photodiode array and liquid chromatography mass spectrometry. Further fragmentation of the protein using a proteolytic enzyme adds another dimension to the specificity of the analysis. Porcine trypsin digests proteins in a very predictable manner and yields peptide fragments of the original protein that can be used as a means for fingerprinting the larger biomolecule. In silico, or theoretical, digestion of HGH by trypsin yields 21 peptides ranging in size from 1 to 23 amino acids in length. The larger fragments containing higher numbers of amino acids give more specificity to identifying a protein based on a fragment produced by the digestion of trypsin. Herein, the analysis of HGH using a proteolytic approach is presented that meets the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG) recommendations for the identification of unknown substances.  相似文献   

18.
The floods in Bosnia and Herzegovina in May 2014 caused landslides all over the country. In the small village of ?eri?i, near the town of Zenica, a landslide destroyed the local cemetery, relocated graves, and commingled skeletal remains. As the use of other physical methods of identification (facial recognition, fingerprint analysis, dental analysis, etc.) was not possible, DNA analysis was applied. DNA was isolated from 20 skeletal remains (bone and tooth samples) and six reference samples (blood from living relatives) and amplified using PowerPlex® Fusion and PowerPlex®Y23 kits. DNA profiles were generated for all reference samples and 17 skeletal remains. A statistical analysis (calculation of paternity, maternity, and sibling indexes and matching probabilities) resulted in 10 positive identifications. In this study, 5 individuals were identified based on one reference sample. This has once again demonstrated the significance of DNA analysis in resolving the most complicated cases, such as the identification of commingled human skeletal remains.  相似文献   

19.
Mitochondrial DNA (mtDNA) haplogroup discrimination is interesting not only for phylogenetic and clinical but also for forensic studies. We discriminated the mtDNA haplogroups of 570 healthy unrelated Han people from Zhejiang Province, Southeast China, by comprehensive analysis mutations of the hypervariable segments-I sequence and diagnostic polymorphisms in mtDNA coding region using real-time polymerase chain reaction (RT-PCR), which was compared with the widely used PCR and restriction fragment length polymorphism (PCR-RFLP) method. The results showed that in superhaplogroup M, haplogroup D was the most common haplotype within this assay to 24.6%, and in the other superhaplotype N, haplogroup B and F were the most common groups. Samples re-identified by PCR-RFLP showed the consistent results that were got with RT-PCR. In conclusion, the RT-PCR strategy appears to be an accurate, reproducible, and sensitive technique for the discrimination of mtDNA haplogroups, especially for mass screenings quickly and economically.  相似文献   

20.
Screening the prevalence and pattern of dental identifiers contributes toward the process of human identification. This research investigated the uniqueness of clinical dental identifiers in photographs and radiographs. Panoramic and lateral cephalometric radiographs and five intra‐oral photographs of 1727 subjects were used. In a target set, two observers examined different subjects. In a subset, both observers examined the same subjects (source set). The distance between source and target subjects was quantified for each identifier. The percentage of subjects in the target set being at least as close as the correct subject was assessed. The number of molars (34.6%), missing teeth (42%), and displaced teeth (59.9%) were the most unique identifiers in photographs and panoramic and lateral cephalometric radiographs, respectively. The pattern of rotated teeth (14.9%) was the most unique in photographs, while displaced teeth was in panoramic (37.6%) and lateral cephalometric (54.8%) radiographs. Morphological identifiers were the most unique, highlighting their importance for human identifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号