首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: In fire debris analysis, weathering of ignitable liquids and matrix interferences can make the identification of ignitable liquid residues (ILRs) difficult. An objective method was developed to associate ILRs with the corresponding neat liquid with discrimination from matrix interferences using principal components analysis (PCA) and Pearson product moment correlation (PPMC) coefficients. Six ignitable liquids (gasoline, diesel, ultra pure paraffin lamp oil, adhesive remover, torch fuel, paint thinner) were spiked onto carpet, which was burned, then extracted using passive headspace extraction, and analyzed by gas chromatography‐mass spectrometry. Both light and heavy burn conditions were investigated. In the PCA scores plot, ignitable liquids were discriminated based on alkane and aromatic content. All ILRs were successfully associated with the corresponding neat liquid using both PCA and PPMC coefficients, regardless of the extent of burning. The method developed in this research may make the association of ILRs with corresponding neat liquids more objective.  相似文献   

2.
Identification of an ignitable liquid in fire debris evidence can be complicated due to evaporation of the liquid, matrix interferences, and thermal degradation of both the liquid and the matrix. In this research, liquids extracted from simulated fire debris were compared to the original liquid using multivariate statistical procedures. Neat and evaporated gasoline and kerosene standards were spiked onto nylon carpet, which was subsequently burned. The ignitable liquid residues were extracted using a passive headspace procedure and analyzed by gas chromatography-mass spectrometry. Pearson product moment correlation coefficients, hierarchical cluster analysis, and principal components analysis were used to compare the liquids extracted from the carpet to the corresponding neat liquid. For each procedure, association of the extracts according to liquid type was possible, albeit not necessarily to the specific evaporation level. Of the three procedures investigated, principal components analysis offered the most promise since contributions from matrix interferences were essentially eliminated.  相似文献   

3.
Abstract: This paper describes the application of microsphere vapor sensing arrays to the detection of ignitable liquid (IL) vapors as both pure vapors and as residues (ILRs) on simulated fire debris samples. The temporal fluorescence response profile of the microsphere array generated a reproducible pattern unique to each analyte that could be used to classify subsequent sensor responses. This system, together with a support vector machine pattern recognition algorithm, was used to address several different IL and ILR classification scenarios. High classification accuracy (98%) was maintained over more than 200 vapor responses and the array was able to identify ILs when presented to the pattern classification algorithm within a dataset containing 11 other volatile compounds. Both burned and unburned IL treated samples were classified correctly greater than 97% of the time. These results indicate that microsphere vapor sensing arrays may be useful for the rapid identification of ILs and ILRs.  相似文献   

4.
A new, fast, and ultra-sensitive headspace sampling method using the Capillary Microextraction of Volatiles (CMV) device is demonstrated for the analysis of ignitable liquid residues (ILRs) in fire debris. This headspace sampling method involves the use of a heated can (60°C) to aid in the recovery of volatile organic compounds (VOCs) from medium and heavy petroleum distillates. Our group has previously reported the utility of CMV to extract gasoline at ambient temperature in less than 5 min in the field. This work evaluates the recovery and analysis of low mass loadings (tens of ng) of VOCs from charcoal lighter fluid, kerosene, and diesel fuel. Nonane, decane, undecane, tridecane, tetradecane, and pentadecane were selected for evaluation of recovery to represent these ILR classes. The face-down heated can headspace sampling technique was compared to the previously reported, non-heated, paper cup headspace sampling technique. Mass recovery improvements of 50%–200% for five of the six target compounds in diesel fuel were achieved compared to the non-heated sampling method. The average relative standard deviation (reported as % RSD) between the replicate trials decreased from an average of 28% to 6% when using the heated can method. Ignitable liquids were spiked onto burned debris in a live burn exercise and sampled using the heated can and paper cup headspace sampling techniques. The heated sampling technique reported here, for the first time, demonstrates an effective extraction method that when coupled to a portable GC–MS instrument allows for a sampling and analysis protocol in the field in less than 30 min.  相似文献   

5.
Vinyl flooring manufacturers use plasticizers to decrease the viscosity and increase the pliability of vinyl. Several ignitable liquid plasticizers used in the manufacture of vinyl flooring were identified and investigated in this study. Twenty-nine collections from five major vinyl manufacturers, a total of 72 samples, were analyzed using passive headspace concentration in accordance with the American Society for Testing and Materials (ASTM E 1412-00) and gas chromatographic-mass spectrometric (GC-MS) analysis as described in ASTM E 1618-01 (1,2). Norpar products and TXIB (2,2,4-trimethyl-1,3-pentanediol diisobutyrate) are ignitable liquids common to the manufacture of vinyl flooring and were identified in all recently obtained samples. Isopar H is an ignitable liquid found in various products such as charcoal starters, copier toners, and some solvents (2). Of the 29 collections analyzed, Isopar H was only identified in Armstrong's Interflex-Traditions pattern.  相似文献   

6.
Principal components analysis (PCA), linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA) were used to develop a multistep classification procedure for determining the presence of ignitable liquid residue in fire debris and assigning any ignitable liquid residue present into the classes defined under the American Society for Testing and Materials (ASTM) E 1618‐10 standard method. A multistep classification procedure was tested by cross‐validation based on model data sets comprised of the time‐averaged mass spectra (also referred to as total ion spectra) of commercial ignitable liquids and pyrolysis products from common building materials and household furnishings (referred to simply as substrates). Fire debris samples from laboratory‐scale and field test burns were also used to test the model. The optimal model's true‐positive rate was 81.3% for cross‐validation samples and 70.9% for fire debris samples. The false‐positive rate was 9.9% for cross‐validation samples and 8.9% for fire debris samples.  相似文献   

7.
Biodegradation can result in selective removal of many of the compounds required for the identification of an ignitable liquid. In this study, the effects of microbial degradation on tiki torch fuel, lamp oil, and turpentine are reported. Samples of soil spiked with 20 μL of the liquids were stored at room temperature for up to 7 days. The ignitable liquids were then recovered using passive headspace concentration onto charcoal strips followed by solvent elution using pentane. Microbial degradation of tiki torch fuel resulted in the loss of the n-alkanes relative to the branched alkanes. Changes in the profile of the lamp oil were minor due to the highly branched nature of its alkanes. Microbial degradation of turpentine resulted in the selective loss of limonene and o-cymene. Overall, significant degradation by microbial action could result in the inability to identify the presence of an ignitable liquid or misclassify the ignitable liquid found.  相似文献   

8.
Gas chromatography–mass spectrometry (GC–MS) data of ignitable liquids in the Ignitable Liquids Reference Collection (ILRC) database were processed to obtain 445 total ion spectra (TIS), that is, average mass spectra across the chromatographic profile. Hierarchical cluster analysis, an unsupervised learning technique, was applied to find features useful for classification of ignitable liquids. A combination of the correlation distance and average linkage was utilized for grouping ignitable liquids with similar chemical composition. This study evaluated whether hierarchical cluster analysis of the TIS would cluster together ignitable liquids of the same ASTM class assignment, as designated in the ILRC database. The ignitable liquids clustered based on their chemical composition, and the ignitable liquids within each cluster were predominantly from one ASTM E1618‐11 class. These results reinforce use of the TIS as a tool to aid in forensic fire debris analysis.  相似文献   

9.
A multistep classification scheme was used to detect and classify ignitable liquid residues in fire debris into the classes defined by the ASTM E1618‐10 standard method. The total ion spectra (TIS) of the samples were classified by soft independent modeling of class analogy (SIMCA) with cross‐validation and tested on fire debris. For detection of ignitable liquid residue, the true‐positive rate was 94.2% for cross‐validation and 79.1% for fire debris, with false‐positive rates of 5.1% and 8.9%, respectively. Evaluation of SIMCA classifications for fire debris relative to a reviewer's examination led to an increase in the true‐positive rate to 95.1%; however, the false‐positive rate also increased to 15.0%. The correct classification rates for assigning ignitable liquid residues into ASTM E1618‐10 classes were generally in the range of 80–90%, with the exception of gasoline samples, which were incorrectly classified as aromatic solvents following evaporative weathering in fire debris.  相似文献   

10.
In arson cases, the collection and detection of traces of ignitable liquids on a suspect's hands can provide information to a forensic investigation. Police forces currently lack a simple, robust, efficient and reliable solution to perform this type of swabbing.In this article, we describe a study undertaken to develop a procedure for the collection of ignitable liquid residues on the hands of arson suspects. Sixteen different collection supports were considered and their applicability for the collection of gasoline traces present on hands and their subsequent analysis in a laboratory was evaluated. Background contamination, consisting of volatiles emanating from the collection supports, and collection efficiencies of the different sampling materials were assessed by passive headspace extraction with an activated charcoal strip (DFLEX device) followed by gas chromatography–mass spectrometry (GC–MS) analysis. After statistical treatment of the results, non-powdered latex gloves were retained as the most suitable method of sampling.On the basis of the obtained results, a prototype sampling kit was designed and tested. This kit is made of a three compartment multilayer bag enclosed in a sealed metal can and containing three pairs of non-powdered latex gloves: one to be worn by the sampler, one consisting of a blank sample and the last one to be worn by the person suspected to have been in contact with ignitable liquids. The design of the kit was developed to be efficient in preventing external and cross-contaminations.  相似文献   

11.
The differing effects of weathering and microbial degradation are described here in a comprehensive study that involved 50 different ignitable liquids from the Ignitable Liquids Database and Reference Collection. Examples of ignitable liquid residues from each of the main classes established by the American Society of Testing and Materials are presented. Weathering was accomplished via evaporation, whereas microbial degradation was carried out on soil at room temperature for periods of up to 21 days. Major trends included the rapid degradation of long n‐alkanes and monosubstituted alkyl benzenes (e.g., toluene, ethylbenzene, and propylbenzene). Surprisingly, some longer branched alkanes (e.g., trimethyloctanes) were also susceptible to microbial attack. Although all ignitable liquids examined suffered at least to some extent from microbial degradation, gasoline, petroleum distillates, and oxygenates were the most susceptible. Isoparaffinic and naphthenic–paraffinic products were the most resistant to microbial degradation.  相似文献   

12.
Fast Gas Chromatography (GC) allows for analysis times that are a fraction of those seen in traditional capillary GC. Key modifications in fast GC include using narrow, highly efficient columns that can resolve mixtures using a shorter column length. Hence, a typical fast GC column has an inner diameter of 100–180 μm. However, to maintain phase ratios that are consistent with typical GC columns, the film thickness of fast GC stationary phases are also low (e.g., 0.1–0.18 μm). Unfortunately, decreased film thickness leads to columns with very low sample capacity and asymmetric peaks for analytes that are not sufficiently dilute. This paper describes micro-bore (50 μm i.d.) capillary columns with thick films (1.25 μm), and low phase ratios (10). These columns have greater sample capacity yet also achieve minimum plate heights as low as 110 μm. Hence, separation efficiency is much higher than would be obtained using standard GC columns. The capillary columns were prepared in-house using a simple static-coating procedure and their plate counts were determined under isothermal conditions. The columns were then evaluated using temperature programming for fast GC–MS analysis of ignitable liquids and their residues on fire debris exemplars. Temperature ramps of up to 75 °C min?1 could be used and separations of ignitable liquids such as gasoline, E85 fuel, and lighter fluid (a medium petroleum distillate) were complete within 3 min. Lastly, simulated fire debris consisting of ignitable liquids burned on carpeting were extracted using passive headspace absorption-elution and the residues successfully classified.  相似文献   

13.
ABSTRACT: Ignitable Liquid Absorbent (ILA), a commercial solid absorbent intended to assist fire scene investigators in sample location and collection, has been field tested in three separate room fires. The ability of the ILA to detect and absorb different amounts of gasoline, odorless paint thinner, and camp fuel on two different substrates after a full-scale burn was assessed against results from an accelerant detection canine and laboratory analysis using gas chromatography-mass spectrometry (GC-MS). The canine correctly alerted on most of the panels that contained an ignitable liquid after the fire, while the ILA indicator dye failed to indicate in the presence of gasoline and camp fuel. GC-MS results for ignitable liquid residue from each panel and from the ILA showed that ILA absorbed odorless paint thinner and camp fuel from most of the test panels, but failed to absorb gasoline from the panels on which gasoline was confirmed to be present.  相似文献   

14.
Clear plastic bags are often used for the collection, sampling and storage of ignitable liquid evidence. They are popular because they are easy to store. transport and are inexpensive. Cryovac and Globus brand polyethylene/polyvinylidine dichloride bags were tested for suitability in storing ignitable liquid evidence. Standards of diesel, kerosene and gasoline were placed in the bags and sampled by passive headspace adsorption. The bags were then heated to determine if absorbed components of the standards could be released upon heating. Recovered extracts were analyzed by GC and GCMS. These bags were found to absorb components of diesel, kerosene, and gasoline. and were also found to produce interfering by-products that obstruct the chromatographic results. Evidence containers need to be tested to ensure that low levels of ignitable liquids are not missed.  相似文献   

15.
A simple, fast, inexpensive, and sensitive technique for the detection and identification of flammable or combustible liquid residues on the skin of arson suspects is presented. The use of solid phase microextraction (SPME) for the analysis of ignitable liquid residues has been demonstrated and it is shown in this work that this technique is effective in extracting these liquid residues at extremely low quantities. Microliter quantities of controlled spikes of gasoline, diesel fuel, and charcoal lighter fluid were deposited on the hands of a volunteer and extracted after several time intervals. The SPME technique can recover very small amounts of liquid deposits on skin up to 3.5 h after exposure, depending on the class of the ignitable liquid residue used.  相似文献   

16.
Ignitable liquids such as fuels, alcohols and thinners can be used in criminal activities, for instance arsons. Forensic experts require to know their chemical compositions, as well as to understand how different modification effects could impact them, in order to detect, classify and identify them properly in fire debris. The acid alteration/acidification of ignitable liquids is a modification effect that sharply alters the chemical composition, for example, of gasoline and diesel fuel, interfering in the forensic analysis and result interpretation. However, to date there is little information about the consequences of this effect over other accelerants of interests. In this research paper, the alteration by sulfuric acid of several commercial thinners and other accelerants of potential use in arsons is studied in-depth. For that purpose, spectral (by ATR-FTIR) and chromatographic (by GC–MS) data were obtained from neat and acidified samples. Then, the spectral and chromatographic modifications of each studied ignitable liquid were discussed, proposing several chemical mechanisms that explain the new by-products produced and the gradual disappearance of the initial compounds. Hydrolysis, Fischer esterification and alkylation reactions are involved in the modification of esters, alcohols, ketones and aromatic compounds of the studied ignitable liquids. This information could be crucial for correctly identifying these accelerants. Additionally, an exploratory analysis revealed that some of the most altered ignitable liquid samples might be very similar with each other, which could have impact on casework.  相似文献   

17.
Fire debris evidence may contain ignitable liquid residues valuable in the investigation of a potential arson scene. The ability to obtain evidence containers that are contaminant-free and vapor-tight is essential to the analysis and storage of fire debris evidence. Commercial containers such as metal "paint" cans, glass mason jars, and polymer bags are often employed as fire debris evidence containers. The purpose of this research was to determine which of these three types of containers provided the most vapor-tight seal for the prevention of ignitable liquid vapor loss and to assess the potential for cross-contamination. Leak rates for each type of container were measured under controlled conditions. Simple mixtures of hydrocarbons were utilized in these experiments. Leak rates were determined based on the amounts of hydrocarbon recovered from activated charcoal located outside the test container and within a secondary container. Quantitation of the hydrocarbons recovered from activated charcoal was calculated using external standard calibration curves following analysis by gas chromatography-mass spectrometry. The results demonstrated that glass jars had the fastest leak rate followed by metal paint cans and properly heat-sealed polymer bags with the slowest leak rate. Each container exhibited a different leak mechanism, which resulted in an observable effect on the composition of hydrocarbons lost from the container. Hydrocarbon transfer from one container to another is also demonstrated. This study presents results that reveal the most vapor-tight container to be a properly heat-sealed copolymer bag.  相似文献   

18.
《Science & justice》2020,60(4):381-387
Two-dimensional gas chromatography is a mature, yet underutilised, separation technique able to provide the high resolution and peak capacity required for the study of complex samples such as oils. This paper presents the development of a comprehensive two-dimensional gas chromatography method with flame ionisation detection to profile easily available ignitable liquids commonly found in arson cases. The use of 2D chromatograms to profile different potential ignitable liquids was also explored for classification purposes. The chemical fingerprints produced were visually different and allowed the distinction of all the petroleum products tested. How the chemical fingerprints of each fuel changed over time was also assessed. Each sample was subjected to weathering with aliquots (1 mL) being collected every half hour for a five-hour period. Principal component analysis of the resulting data was able to demonstrate the effect of weathering for all fuels tested and established that it was still possible to differentiate between the various petrochemicals even after weathering. The work demonstrates an optimised analytical method for petrochemical product analysis that provides forensic scientists with a robust, fast and sensitive technique that can be used to determine not only which ignitable liquid was used in a fire (even after the fact) but also provide information on the specific fuel used.  相似文献   

19.
The Fire and Explosion Investigation Working Group of the European Network of Forensic Science Institutes (ENFSI) is the organiser of a collaborative testing programme for ignitable liquid analysis. The testing programme was initiated in 1998. Initially to inventory the analytical methods used in this field of analysis, but with the ultimate goal to establish a European testing programme for fire debris analysts. As of today, five tests have been conducted. This article will provide an overview of the first five ENFSI collaborative tests for ignitable liquid analysis. The background, objectives and characteristics of the testing programme are summarised, followed by an overview of the sample composition employed, the participants' performance, the difficulties and the lessons learned in each test.  相似文献   

20.
The application of comprehensive two-dimensional gas chromatography (GC x GC) for the forensic analysis of ignitable liquids in fire debris is reported. GC x GC is a high resolution, multidimensional gas chromatographic method in which each component of a complex mixture is subjected to two independent chromatographic separations. The high resolving power of GC x GC can separate hundreds of chemical components from a complex fire debris extract. The GC x GC chromatogram is a multicolor plot of two-dimensional retention time and detector signal intensity that is well suited for rapid identification and fingerprinting of ignitable liquids. GC x GC chromatograms were used to identify and classify ignitable liquids, detect minor differences between similar ignitable liquids, track the chemical changes associated with weathering, characterize the chemical composition of fire debris pyrolysates, and detect weathered ignitable liquids against a background of fire debris pyrolysates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号