首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Questioned documents examined in a forensic laboratory sometimes contain signatures written with ballpoint pen inks; these signatures were examined to assess the feasibility of micro‐attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy as a forensic tool. Micro‐ATR FTIR spectra for signatures written with 63 ballpoint pens available commercially in Korea were obtained and used to construct an FTIR spectral database. A library‐searching program was utilized to identify the manufacturer, blend, and model of each black ballpoint pen ink based upon their FTIR peak intensities, positions, and patterns in the spectral database. This FTIR technique was also successfully used in determining the sequence of homogeneous line intersections from the crossing lines of two ballpoint pen signatures. We have demonstrated with a set of sample documents that micro‐ATR FTIR is a viable nondestructive analytical method that can be used to identify the origin of the ballpoint pen ink used to mark signatures.  相似文献   

2.
Abstract:  The application of attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectromicroscopy for detection of explosive particles in fingerprints is described. The combined functions of ATR-FTIR spectromicroscopy are visual searching of particles in fingerprints and measuring the FTIR spectra of the particles. These functions make it possible to directly identify whether a suspect has handled explosives from the fingerprints alone. Particles in explosive contaminated fingerprints are either ingredients of the explosives, finger residues, or other foreign materials. These cannot normally be discriminated by their morphology alone. ATR-FTIR spectra can provide both particle morphology and composition. Fingerprints analyzed by ATR-FTIR can be used for further analysis and identification because of its non-destructive character. Fingerprints contaminated with three different types of explosives, or potential explosives, have been analyzed herein. An infrared spectral library was searched in order to identify the explosive residues. The acquired spectra are compared to those of finger residue alone, in order to differentiate such residue from explosive residue.  相似文献   

3.
The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance–fourier transform infrared (ATR‐FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR‐FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR‐FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR‐FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR‐FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112).  相似文献   

4.
The time since deposition (TSD) of a bloodstain is a valuable piece of evidence for forensic scientists to determine the time at which a crime took place. The objective of this study was to determine whether attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy could be used to estimate the TSD of a bloodstain in a relatively early period (from 0 min to the time required for the bloodstain to dry out). For this purpose, we used ATR‐FTIR to study the variation in absorbance at certain wavelengths as rat and human blood sample dried out. The absorbance at 3308/cm (A3308) was found to have a close correlation with the TSD during this time period, and the changes in A3308 during the drying of rat and human blood drops under the same controlled conditions showed similar results. The current study indicates that ATR‐FTIR spectroscopy has potential as a tool for estimating TSD at early time periods of blood deposition.  相似文献   

5.
Time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) is a well‐established surface technique that provides both elemental and molecular information from several monolayers of a sample surface while also allowing depth profiling or image mapping to be performed. Static TOF‐SIMS with improved performances has expanded the application of TOF‐SIMS to the study of a variety of organic, polymeric, biological, archaeological, and forensic materials. In forensic investigation, the use of a minimal sample for the analysis is preferable. Although the TOF‐SIMS technique is destructive, the probing beams have microsized diameters so that only small portion of the questioned sample is necessary for the analysis, leaving the rest available for other analyses. In this study, TOF‐SIMS and attenuated total reflectance Fourier transform infrared (ATR‐FTIR) were applied to the analysis of several different pen inks, red sealing inks, and printed patterns on paper. The overlapping areas of ballpoint pen writing, red seal stamping, and laser printing in a document were investigated to identify the sequence of recording. The sequence relations for various cases were determined from the TOF‐SIMS mapping image and the depth profile. TOF‐SIMS images were also used to investigate numbers or characters altered with two different red pens. TOF‐SIMS was successfully used to determine the sequence of intersecting lines and the forged numbers on the paper.  相似文献   

6.
The knowledge of the discriminating power of analytical techniques used for the differentiation of writing inks can be useful when interpreting results. Ultraviolet-visible (UV-VIS) spectrophotometry, thin layer chromatography (TLC), and diffuse reflectance Fourier transform infrared spectroscopy (FT-IR) were used to examine a population of 21 black and 12 blue ballpoint writing inks. Based on corroborative results of these methods, the discrimination power for UV-VIS, TLC, and FT-IR was determined to be 100% and 98% for the black and blue inks, respectively. Generally, TLC and UV-VIS can be used to differentiate the colorant components (i.e., dyes and some pigments) found in inks. As FT-IR can be utilized to identify some of the noncolorant components, it was determined to be an excellent complementary technique that can be implemented into an analytical scheme for ink analysis.  相似文献   

7.
The objective of this study was to evaluate the application of Fourier transform infrared (FTIR) spectroscopy for detecting diffuse axonal injury (DAI) in a mouse model. Brain tissues from DAI mouse model were prepared with H&E, silver, and β‐amyloid precursor protein (β–APP) immunohistochemistry stains and were also studied with FTIR. The infrared spectrum images showed high absorption of amide II in the subcortical white matter of the experimental mouse brain, while there was no obvious expression of amide II in the control mouse brain. The areas with high absorption of amide II were in the same distribution as the DAI region confirmed by the silver and β‐APP studies. The result suggests that high absorption of amide II correlates with axonal injury. The use of FTIR imaging allows the biochemical changes associated with DAI pathologies to be detected in the tissues, thus providing an important adjunct method to the current conventional pathological diagnostic techniques.  相似文献   

8.
The rise in improved and widely accessible printing technology has resulted in an interest to develop rapid and minimally destructive chemical analytical techniques that can characterize printing inks for forensic document analysis. Chemical characterization of printing inks allows for both discrimination of inks originating from different sources and the association of inks originating from the same source. Direct analysis in real‐time mass spectrometry (DART‐MS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR) were used in tandem to analyze four different classes of printing inks: inkjets, toners, offset, and intaglio. A total of 319 samples or ~ 80 samples from each class were analyzed directly on a paper substrate using the two methods. DART‐MS was found to characterize the semi‐volatile polymeric vehicle components, while ATR‐FTIR provided chemical information associated with the bulk components of these inks. Complimentary data results in improved discrimination when both techniques are used in succession resulting in >96% discrimination for all toners, 95% for all inkjets, >92% for all offset, and >54% for all intaglio inks.  相似文献   

9.
左莹莹  李健 《刑事技术》2020,(2):183-187
脑挫裂伤是常见的一类颅脑损伤,单纯的组织病理学技术可能难以早期发现及精确诊断。傅里叶变换红外面扫描成像技术(FTIR-mapping)是病理学研究领域的新技术,因其结合了傅里叶变换红外光谱、红外显微镜技术以及面扫描成像技术的特点,具有测定方法简便、对样本无损、灵敏度高、准确、直观等优点,突破了传统技术的局限,能检测出发生了物质数量、结构以及构象变化但缺乏明显形态学变化的脑挫裂伤,从而实现早期精准地诊断脑挫裂伤。FTIR-mapping虽已能绘制某些损伤组织的红外光谱病理图像,但其在法医病理学中的价值有待全面深入开发。本文综述了脑挫裂伤的法医病理学研究进展以及傅里叶变换红外面扫描成像技术在法医病理学中的应用。  相似文献   

10.
Evaluating traumatic axonal injury remains challenging in clinical and forensic sciences as its identification is difficult using routine diagnostic methods. This study used Fourier transform infrared microspectroscopy to detect TAI within the corpus callosum in an animal model. Protein conformational analysis revealed significantly increased β-sheet and β-turn contents paralleled by a decrease in α-helix content at 24 h postinjury, while the antiparallel β-sheet content was decreased at 12 h postinjury. Compared with the control group, the lipid/protein ratio was significantly reduced in all of the injured groups. At 24 h postinjury, there were increases in the olefinic=CH and CH3 group of lipids accompanied by the decreased CH2 group, but the results at 12 and 72 h were contrary to that at 24 h. Our study showed that FTIRM could differentiate injured from normal white matter at different time points following TBI via examination of these infrared spectral parameters.  相似文献   

11.
In document examination, it is of great importance to determine the composition of seal ink with different imprint times, and spectroscopic methods are widely used today. In this research, the diffusion of seal inks from three different brands on the same type of paper is monitored in situ by microinfrared spectroscopy and microinfrared imaging technology. The area of the absorption peak at 1743 cm?1 gradually decreases with increasing diffusion time. The diffusion kinetics of seal ink on paper are also studied by analyzing the infrared spectra of seal inks at the same measuring point with different diffusion times. The research provides a basic study in understanding the diffusion behavior of seal ink on paper over short time spans.  相似文献   

12.
Crime scene investigators and laboratory analysts use chemical tests to detect and differentiate body fluids. Testing often requires a sample of the stain, and the chemicals may cause degradation of the fluid or interfere with subsequent tests. Colorimetric chemical tests do not differentiate between different types of the same fluid, such as venous and menstrual blood, and there is no presumptive test available to simultaneously differentiate several body fluids. In this study, we recorded ATR FT ‐IR spectra of venous and menstrual blood, semen, saliva, and breastmilk. Neat and simulated casework body fluid samples were analyzed on cotton, nylon, wood, paper, and glass substrates. Differences in fluid composition, including proteins and small molecules, resulted in spectral differences. Venous and menstrual blood is differentiated by the peak at 1039 cm?1 attributed to phosphoric acid found in menstrual blood. Peak intensity is influenced by the porosity and weave of the substrate fabric.  相似文献   

13.
Abstract: The applicability of Raman spectroscopy and surface‐enhanced Raman scattering (SERS) to the analysis of synthetic dyes commonly found in ballpoint inks was investigated in a comparative study. Spectra of 10 dyes were obtained using a dispersive system (633 nm, 785 nm lasers) and a Fourier transform system (1064 nm laser) under different analytical conditions (e.g., powdered pigments, solutions, thin layer chromatography [TLC] spots). While high fluorescence background and poor spectral quality often characterized the normal Raman spectra of the dyes studied, SERS was found to be generally helpful. Additionally, dye standards and a single ballpoint ink were developed on a TLC plate following a typical ink analysis procedure. SERS spectra were successfully collected directly from the TLC plate, thus demonstrating a possible forensic application for the technique.  相似文献   

14.
Axonal injury contributes greatly to neurological dysfunction following traumatic brain injury (TBI), but current histological diagnostic methods are limited in identifying the pathological profiles of injured axons and unable to provide an objective and accurate quantification. Fourier transform infrared microspectroscopy (FTIRM) has the ability to offer macromolecular bioinformatics of the tissues including biochemical composition and structure by calculating band absorption intensity. In this study, axonal injury in the brainstem of rats with traumatic brain injury at 72 h post‐trauma, which was confirmed with beta‐amyloid precursor protein (β‐APP) immunostaining, was detected with FTIRM technique. The lower intensity of infrared absorbance under the amide I band corresponds strongly to the area of axonal injury, and further analysis of amide I band shows significant differences in protein conformation between injured and normal axons. The findings indicate that using FTIRM technique, the amide I band has potentials to be a infrared spectral marker of axonal injury.  相似文献   

15.
Abstract: Pressure‐sensitive tape is often used to bind explosive devices. It can become important trace evidence in many cases. Three types of calcium carbonate (heavy, light, and active CaCO3), which were widely used as additives in pressure‐sensitive tape substrate, were analyzed with Fourier transform infrared spectroscopy (FTIR) in this study. A Spectrum GX 2000 system with a diamond anvil cell and a deuterated triglycine sulfate detector was employed for IR observation. Background was subtracted for every measurement, and triplicate tests were performed. Differences in positions of main peaks and the corresponding functional groups were investigated. Heavy CaCO3 could be identified from the two absorptions near 873 and 855/cm, while light CaCO3 only has one peak near 873/cm because of the low content of aragonite. Active CaCO3 could be identified from the absorptions in the 2800–2900/cm region because of the existence of organic compounds. Tiny but indicative changes in the 878–853/cm region were found in the spectra of CaCO3 with different content of aragonite and calcite. CaCO3 in pressure‐sensitive tape, which cannot be differentiated by scanning electron microscope/energy dispersive X‐ray spectrometer and thermal analysis, can be easily identified using FTIR. The findings were successfully applied to three specific explosive cases and would be helpful in finding the possible source of explosive devices in future cases.  相似文献   

16.
In the second part of this survey, the ability of micro‐Raman spectroscopy to discriminate 180 fiber samples of blue, black, and red cottons, wools, and acrylics was compared to that gathered with the traditional methods for the examination of textile fibers in a forensic context (including light microscopy methods, UV‐vis microspectrophotometry and thin‐layer chromatography). This study shows that the Raman technique plays a complementary and useful role to obtain further discriminations after the application of light microscopy methods and UV‐vis microspectrophotometry and assure the nondestructive nature of the analytical sequence. These additional discriminations were observed despite the lower discriminating powers of Raman data considered individually, compared to those of light microscopy and UV‐vis MSP. This study also confirms that an instrument equipped with several laser lines is necessary for an efficient use as applied to the examination of textile fibers in a forensic setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号