首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 502 毫秒
1.
Research into the deposition patterns of primer gunshot residue (GSR) beyond a primary target was previously nonexistent. This study aimed to determine the deposition patterns of GSR once a bullet passed through an initial target and continued on its path into additional targets. Multiple repetitions were performed to assess the GSR deposition patterns after a bullet was shot through a closed window into either a dummy or a wall within an enclosed room. Samples were taken from both the primary and secondary target holes as well as from nontarget areas. Significant amounts of GSR were found on all samples. The results show that GSR continues to be deposited along the path of the bullet after passing through a primary glass target. These findings reiterate the lack of probative value in collecting GSR samples from gunshot victims even if they are in an enclosed area separate from the shooter.  相似文献   

2.
A review of the literature concerning the fate and behavior of gunshot residue (GSR) is presented. A number of concomitant parameters including firearm and ammunition type, plume and GSR material characteristics, travel distances, chemical composition and GSR morphology are critically discussed in relation to their effects on the distribution and deposition, transfer and persistence processes of GSR. The underlying mechanisms associated with such processes are also considered. Knowledge of these processes on GSR materials could provide valuable information concerning scene preservation and subsequent forensic sampling. The number of GSR particles deposited can vary significantly with each firearm discharge, highlighting the potential to produce distinctive data in each individual case. With the continual development and compositional changes of new ammunition types, further evaluation of the effect these processes may have on GSR evidence and their possible influence on the interpretation of the analytical results should be given due consideration.  相似文献   

3.
Abstract: Pork ribs with intact muscle tissue were used in an experimental attempt to identify bullet wipe on bone at distances from 1 to 6 feet with 0.45 caliber, full metal jacket ammunition. This resulted in the unexpected finding of primer‐derived gunshot residue (GSR) deep within the wound tract. Of significance is the fact that the GSR was deposited on the bone, under the periosteum, after the bullet passed through a Ziploc® bag and c. 1 inch of muscle tissue. It is also important to note that the GSR persisted on the bone after the periosteum was forcibly removed. The presence of primer‐derived GSR on bone provides the potential to differentiate gunshot trauma from blunt trauma when the bone presents an atypical gunshot wound. In this study, the presence of gunshot primer residue at a distance of 6 feet demonstrates the potential for establishing maximum gun‐to‐target distance for remote shootings.  相似文献   

4.
Abstract: Variations in gunshot residue (GSR) compositions are used in the reconstruction of shooting incidents. In this study, GSR samples taken from seven different locations around and in the firearm were collected and analyzed using scanning electron microscopy/energy dispersive X‐ray analysis. Four different types of ammunition were applied. Very low correlations were found when different ammunition were used. This clearly shows that it is possible to differentiate between ammunition types. When the same ammunition was used, high correlations were found between samples taken from external positions (such as hands of shooter, bullet‐entrance holes) but poor correlation was found between internal samples (such as firearm barrel, cartridge case) and external samples. A high degree of association was found between samples that simulated victim and shooter. These findings clearly demonstrate that GSR comparison studies are meaningful but care needs to be taken when choosing suitable exhibits. External samples (such as hands of shooter, bullet‐entrance holes) are more suitable candidates than internal samples (barrel of the firearm, cartridge case).  相似文献   

5.
Due to possible secondary transfer of gunshot residue (GSR) onto a suspect in police custody prior to sampling, a baseline must be created for the amount of GSR present. With an increase of “lead free” ammunition, testing for both gunpowder and primer GSR is relevant. Seventy samples were collected using carbon‐coated adhesive stubs from four Pittsburgh Police Stations and vehicles to investigate these locations as sources of secondary GSR contamination. These seventy samples were analyzed for primer GSR using scanning electron microscopy‐energy‐dispersive X‐ray spectrometry. One primer GSR particle was detected; no sample was classified as positive for primer GSR. These same samples were then analyzed for gunpowder GSR using liquid chromatography coupled to tandem mass spectrometry to test for akardite II, ethylcentralite, diphenylamine, N‐nitrosodiphenylamine, 2‐nitrodiphenylamine, and 4‐nitrodiphenylamine. Ethylcentralite was quantifiable in two test samples. These results suggest there is a negligible potential for secondary transfer of primer and gunpowder GSR.  相似文献   

6.
In 0.22 caliber rimfire ammunition, the primer often contains lead or lead and barium compounds. As residues from these primers do not contain lead, barium, and antimony, they cannot be uniquely classified as gunshot residue (GSR) under ASTM designation E 1588-95. In many types of 0.22 caliber rimfire ammunition, the cartridge contains a primer sensitized with glass. In this paper we describe a previously unreported type of GSR particle consisting of glass fused with other primer components. As there appear to be few potential environmental or occupational sources of particles composed of lead and barium compounds fused to glass, particularly borosilicate glass, these particles may have high evidential value. Scanning electron microscopy with energy dispersive X-ray detection (SEM-EDX) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) were evaluated for the characterization of glass-containing GSR particles. The occurrence of glass-containing GSR particles was established in the residue from various brands of 0.22 caliber ammunition, and several sub-types were identified.  相似文献   

7.
The elemental objects of the research study are: determination of time periods corresponding to gunshot residue particles (GSR) deposition after the shot from selected pistols and a revolver, and evaluation of the deposited particles number. For several shooting experiments were used a pistol CZ model 85, caliber 9 mm Luger with common ammunition 9 mm Luger FMJ Sellier & Bellot, a pistol CZ model 70, caliber 7.65 mm Browning (32 ACP) with common 7.65 mm Browning FMJ Sellier & Bellot ammunition and a revolver S&W Modell 60, barell length 2-1/8', cal. .38 Special with common Sellier&Bellot (FMJ) ammunition. The results of the study have indicated the behavior of GSR particles deposited after a single discharge. The overall time interval of GSR particles deposition and the number of deposited particles with the above mentioned arms and ammunition were established. The results can potentially be used for clarifying the situation at crime scenes and for subsequent interpretation of GSR evidential value in caseworks.  相似文献   

8.
A statistical investigation of the relationship between firing range and the amount and distribution of gunshot residue (GSR), used automated image analysis (IA) to quantify GSR deposit resulting from firings into pig skin, from distances ranging between contact and 45 cm. Overall, for a Ruger .22 semi-automatic rifle using CCI solid point, high velocity ammunition, the total area of GSR deposit on the skin sections decreased in a non-linear fashion with firing range. More specifically there were significant differences in the amount of GSR deposited from shots fired at contact compared with shots fired from distances between 2.5 and 45 cm; and between shots fired from a distance of 20 cm or less, with shots fired at a distance of 30 cm or more. In addition, GSR particles were heavily concentrated in the wound tract only for contact and close range shots at 2.5 cm, while the particle distribution was more uniform between the wound tract and the skin surfaces for shots fired from distances greater than 2.5 cm. Consequently, for future scientific investigations of gunshot fatalities, once standards have been established for the weapon and ammunition type in question, image analysis quantification of GSR deposited in and around the gunshot wound may be capable of providing a reliable, statistical basis for estimating firing range.  相似文献   

9.
Gunshot residue (GSR) from the discharge of ammunition can provide crucial information in reconstructing criminal cases. Traditional primers create particles of heavy metals such as lead, barium, and antimony. In forensic laboratories, automatic inorganic particle detection is performed by scanning electron microscopy (SEM), using the backscattered electron signal to search for bright residues among the many darker environmental particles, due to higher electron density of the former. Some innovative primers, indicated as heavy metal‐free (HMF), produce a residue of elements with atomic numbers below 21, urgently demanding new detecting solutions. For the first time, residues from Sellier & Bellot Nontox HMF primer are demonstrated to emit visible light under electron beam stimulation in a SEM. Cathodoluminescence is then proposed as a promising tool to both detect and characterize residues in forensic cases involving HMF primers, with minor changes to traditional analytical apparatus used for inorganic GSR analysis.  相似文献   

10.
In traditional scanning electron microscopy/energy dispersive X-ray analysis of gunshot residue (GSR), one has to cope more and more frequently with limitations of this technique due to the use of lead-free ammunition or ammunition lacking heavy metals. New methods for the analysis of the organic components of common propellant powder stabilizers were developed based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). A multiple reactions monitoring scanning method was created for the screening of akardite II, ethylcentralite, diphenylamine, methylcentralite, N-nitrosodiphenylamine, 2-nitrodiphenylamine, and 4-nitrodiphenylamine, present in standards mixtures. Five out of seven of these target compounds can be selectively identified and distinguished from the two others with a high accuracy. Samples from the hands of a shooter were collected by swabbing and underwent solid phase extraction prior to analysis. Detection limits ranging from 5 to 115 mug injected were achieved. Results from several firing trials show that the LC-MS/MS method is suitable for the detection of stabilizers in samples collected following the firing of 9 mm Para ammunitions.  相似文献   

11.
Currently, SEM-EDS is used to detect gunshot residue (GSR) from the presence of Ba, Pb, and Sb in the sample. However, the development of new nontoxic ammunition (NTA) has prevented conventional metals from being found. In this work, we aim to determine the presence of an inorganic luminescent chemical marker based on rare earth in gunshot residues using the technique of squarewave voltammetry (SWV). After firing, the luminescent complex [(Eu2Zr)(btc)3(Hbtc)0.5.6H2O], which is used as a chemical marker, can be detected under a UV lamp. An aqueous solution with 0.1 mol L−1 KCl as supporting electrolyte can be easily collected on carbon paste electrode surfaces for SWV analysis A = 100 mV, f = 10 Hz, and step potential of 5 mV are required. The luminescent marker incorporated into the carbon paste electrode showed two anodic peak currents in the region of 0.4 V (vs Ag/AgCl) and at 0.75 V (vs Ag/AgCl) and also a cathodic one in 0.4 V (vs Ag/AgCl). SEM-EDS was able to analyze the same voltammetric results for conventional and nontoxic ammunition containing the luminescent marker. Therefore, voltammetry and SEM-EDS are valid for detecting the new residue marker in GSR. Despite this, the electrochemical method is still more advantageous because of its low cost and lack of expensive equipment and supplies in forensic laboratories.  相似文献   

12.
Gunshot residue (GSR) is commonly analysed in forensic casework using either scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) or gas chromatography-mass spectrometry (GC-MS). Relatively little work has been reported on the post-discharge GSR content of non-metallic inorganic or low molecular weight organic anions to distinguish between different ammunition types. The development of an analytical method using suppressed micro-bore anion exchange chromatography (IC) is presented for the analysis of GSR. A hydroxide gradient was optimised for the separation of 19 forensically relevant organic and inorganic anions in <23min and sensitivities of the order of 0.12-3.52ng of anion detected for all species were achieved. Along with an optimised extraction procedure, this method was applied to the analysis of post-ignition residues from three selected ammunition types. By profiling and comparing the anionic content in each ammunition residue, the possibility to distinguish between each type using their anionic profiles and absolute weight is presented. The potential for interference is also discussed with respect to sample types which are typically problematic in the analysis of GSR using SEM-EDX and GC-MS. To the best of our knowledge this represents the first study on the analysis of inorganic anions in GSR using suppressed ion chromatography.  相似文献   

13.
0.22 caliber rimfire ammunition is commonly encountered in firearms incidents in Australia. This paper reports on work which has confirmed the nonhomogeneous nature of gunshot residue (GSR) particles and that the lead and barium distribution within particles varies significantly with the particle size and structure. The outcome has been an improved understanding of how the particle formation influences the ability to determine the origin of GSR derived specifically from 0.22 caliber rim fire ammunition.  相似文献   

14.
In this study, chemical composition and morphology of gunshot residue (GSR) of 9 × 19 mm Parabellum‐type MKE (Turkey)‐brand ammunition were analyzed by scanning electron microscope and energy dispersive X‐ray spectrometer. GSR samples were collected by “swab” technique from the shooter's right hand immediately after shooting. According to general principles of thermodynamics, it is likely that the structures will have a more regular (homogeneous) spherical form to minimize their surface area due to very high temperatures and pressures that occur during explosion. Studied samples were collected under the same conditions with the same original ammunition, from the same firearm and a single shooter. This is because many other variables may affect size, structure, and composition in addition to the concentrations of elements of the structure. Results indicated that the chemical compositions are effective in the formation of GSR morphological structures.  相似文献   

15.
In using infrared or infrared-enhanced photography to examine gunshot residue (GSR) on dark-colored clothing, the GSR particles are microscopically examined directly on the fabric followed by the modified Griess test (MGT) for nitrites. In conducting the MGT, the GSR is transferred to treated photographic paper for visualization. A positive reaction yields an orange color on specially treated photographic paper. The examiner also evaluates the size of the powder pattern based on the distribution of nitrite reaction sites or density. A false-positive reaction can occur using the MGT due to contaminants or dyes that produce an orange cloud reaction as well. A method for enhancing visualization of the pattern produced by burned and partially unburned powder is by treatment of the fabric with a solution of sodium hypochlorite. In order to evaluate the results of sodium hypochlorite treatment for GSR visualization, the MGT was used as a reference pattern. Enhancing GSR patterns on dark or multicolored clothing was performed by treating the fabric with an application of 5.25% solution of sodium hypochlorite. Bleaching the dyes in the fabric enhances visualization of the GSR pattern by eliminating the background color. Some dyes are not affected by sodium hypochlorite; therefore, bleaching may not enhance the GSR patterns in some fabrics. Sodium hypochlorite provides the investigator with a method for enhancing GSR patterns directly on the fabric. However, this study is not intended to act as a substitute for the MGT or Sodium Rhodizonate test.  相似文献   

16.
We devised a simple and rapid method for detection of gunshot residue (GSR) particles, using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX) analysis. Experiments were done on samples containing GSR particles obtained from hands, hair, face, and clothing, using double-sided adhesive coated aluminum stubs (tape-lift method). SEM/WDX analyses for GSR were carried out in three steps: the first step was map analysis for barium (Ba) to search for GSR particles from lead styphnate primed ammunition, or tin (Sn) to search for GSR particles from mercury fulminate primed ammunition. The second step was determination of the location of GSR particles by X-ray imaging of Ba or Sn at a magnification of x 1000-2000 in the SEM, using data of map analysis, and the third step was identification of GSR particles, using WDX spectrometers. Analysis of samples from each primer of a stub took about 3 h. Practical applications were shown for utility of this method.  相似文献   

17.
Abstract: A comprehensive review of the scientific literature on gunshot residue (GSR) is presented. Aspects of both inorganic and organic GSR are discussed, from formation and distribution, to sample collection, preparation, and analysis using a variety of techniques. The interpretation of GSR results is also considered including issues surrounding the contamination, distribution, and transfer of GSR. Potential problems with ulterior sources of GSR like particles have been reported in the literature. For example, particles from environmental and occupational sources have been highlighted as exhibiting similar chemical and morphological characteristics to GSR. These findings are put into context with regard to interpreting samples. A move toward a “case by case” approach is argued to be more preferable to a “formal” classification system where possible. The analysis of both inorganic and organic compositions of residue samples as well as morphological considerations is considered to be a more ideal approach to GSR analysis, whereever practicable.  相似文献   

18.
Following previous work on differentiation between gunshot residue according to the type of ammunition used, a specific investigation was undertaken of traces originating from 9 mm Luger ammunition using SEM-EDX. The aim of this study was to determine whether GSR originating from this type of ammunition is similar, or whether differentiation could be made between particular manufacturers of Luger ammunition. The results were collected in the form of counts of particles in each of seven key elemental classes being combinations of lead, antimony and barium. These were then adjusted to a factor known as frequency of occurrence which allows comparison of the distribution of particles within the classes between samples with differences in absolute particle counts. The relationships between the samples were examined using non-parametric statistical tests: R-Spearman and tau-Kendall rank correlation coefficients. It has been found that most of the studied samples of GSR were similar to each other despite their originating from various manufacturers.  相似文献   

19.
The application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) for the characterisation of gunshot residue (GSR) from 0.22 caliber rimfire ammunition is reported. Results obtained by TOF-SIMS were compared with conventional scanning electron microscopy (SEM) studies. As could be expected, TOF-SIMS exhibited greater elemental sensitivity than SEM equipped with energy dispersive X-ray detection (SEM-EDX), and was also capable of detecting fragments characteristic of inorganic compounds. This preliminary study indicates that TOF-SIMS offers substantial potential for forensic GSR examinations as a complementary technique to SEM-EDX. In addition TOF-SIMS is applicable to the analysis of individual particles in the typical size range encountered in GSR casework.  相似文献   

20.
Automated scanning electron microscopy coupled with image analysis and X-ray micro analysis was used to characterize a variety of gunshot residue (GSR) samples. More than 500 rounds of commercially available ammunition and six different types of hand gulls were used in the study of 17 GSR and 19 reference specimens. The individual particle X-ray composition was determined for 12 different elements. Elemental composition of GSR particles was highly variable but consistent with compounds mixed into or associated with a barium oxide matrix. When present in a specimen, GSR could be adequately characterized with automated procedures in less than an hour by restricting analyses to features larger than 2 microm. In "clean" samples, a higher resolution particle search was required to avoid reporting false negatives. Careful control of the back scattered electron signal strength threshold, by reference to a standard, was needed to ensure both time-efficient and accurate analyses. Samples collected from non-shooting subjects. active in a physical environment which contained firearms discharge residue were seen to be easily contaminated by sub-micron GSR particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号