首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to compare urinary excretion patterns of two cannabinoid metabolites in subjects with a history of chronic marijuana use. The first metabolite analyzed was nor-9-carboxy-delta9-tetrahydrocannabinol (delta9-THC-COOH), the major urinary cannabinoid metabolite that is pharmacologically inactive. The second metabolite 11-OH-delta9-THC is an active cannabinoid metabolite and is not routinely measured. Urine specimens were collected from four subjects on 12-20 occasions > or = 96 h apart in an uncontrolled clinical setting. Creatinine was analyzed in each urine specimen by the colorimetric modified Jaffé reaction on a SYVA 30R biochemical analyzer. All urine specimens analyzed for 11-OH-delta9-THC had screened positive for cannabinoids with the EMIT II Plus cannabinoids assay (cut-off 50 ng/mL) on a SYVA 30R analyzer and submitted for delta9-THC-COOH confirmation by GC-MS (cut-off concentration 15 ng/mL). Eleven-OH-delta9-THC was measured by GC-MS with a cut-off concentration of 3 ng/mL. Both GC-MS methods for cannabinoid metabolites used deuterated internal standards for quantitative analysis. The mean (range) of urinary delta9-THC-COOH concentration was 1153 ng/mL (78.7-2634) with a cut-off of 15 ng/mL. The mean (range) of delta9-THC-COOH/creatinine ratios (ng/mL delta9-THC-COOH/mmol/L creatinine) was 84.1 (8.1-122.1). The mean (range) urinary of 11-OH-delta9-THC concentration was 387.6 ng/mL (11.9-783) with a cut-off of 3 ng/mL, and the mean (range) of 11-OH-delta9-THC/creatinine ratio (ng/mL 11-OH-delta9-THC/mmol/L creatinine) was 29.7 (1.2-40.7). Of the 63 urine specimens submitted for delta9-THC-COOH confirmation by GC-MS, 59/63 urine specimens (94%) were positive for delta9 -THC-COOH and 51/63 (81%) were positive for 11-OH-delta9-THC. Overall, the concentrations of 11-OH-delta9-THC in urine specimens collected > or = 96 h apart were lower than delta9-THC-COOH concentrations in 50/51 of the urine specimens in this population. Further urinary cannabinoid excretion studies are needed to assess whether 11-OH-delta9-THC analyses have a role when assessing previous marijuana or hashish use in chronic users whose urine specimens remain positive for delta9-THC-COOH for an extended period of time after last drug use.  相似文献   

2.
Huestis and Cone reported in [J. Anal. Toxicol. 22 (1998) 445] that serial monitoring of Delta9-THC-COOH/creatinine ratios in paired urine specimens collected at least 24h apart could differentiate new drug use from residual Delta(9)-THC-COOH excretion following acute marijuana use in a controlled setting. The best accuracy (85.4%) for predicting new marijuana use was for a Delta(9)-THC-COOH/creatinine ratio > or = 0.5 (dividing the Delta9-THC-COOH/creatinine ratio of specimen no. 2 by the specimen no. 1 ratio). In previous studies in this laboratory [J. Anal. Toxicol. 23 (1999) 531 and Forensic Sci. Int. 133 (2003) 26], urine specimens were collected from chronic marijuana users > or = 24 h or > = 48 h apart in an uncontrolled setting. Subjects with a history of chronic marijuana use were screened for cannabinoids with the EMIT II Plus cannabinoids assay (cut-off 50 ng/ml) followed by confirmation for Delta9-THC-COOH by GC-MS (cut-off 15 ng/ml). Creatinine was analyzed as an index of dilution. The objective of the present study was to evaluate whether creatinine corrected specimens could differentiate new marijuana or hashish use from the excretion of residual Delta(9)-THC-COOH in chronic marijuana users based on the Huestis 0.5 ratio. Urine specimens (N=376) were collected from 29 individuals > or = 96 h between urine collections. The mean urinary Delta9-THC-COOH concentration was 464.4 ng/ml, mean Delta9-THC-COOH/creatinine ratio (ng/(ml Delta9-THC-COOH mmoll creatinine)) was 36.8 and the overall mean Delta9-THC-COOH/creatinine ratio of specimen 2/mean Delta9-THC-COOH/creatinine ratio of specimen 1 was 1.37. The Huestis ratio calculation indicated new drug use in 83% of all sequentially paired urine specimens. The data were sub-divided into three groups (Groups A-C) based on mean Delta9-THC-COOH/creatinine values. Interindividual mean Delta9-THC-COOH/creatinine values ranged from 4.7 to 13.4 in Group A where 80% of paired specimens indicated new drug use (N=10) and 20.4-39.6 in Group B where 83.6% of paired specimens indicated new drug use (N=7). Individual mean Delta9-THC-COOH/creatinine values ranged from 44.2 to 120.2 in Group C where 84.5% of paired urine specimens indicated new marijuana use (N=12). Correcting Delta9-THC-COOH excretion for urinary dilution and comparing Delta9-THC-COOH/creatinine concentration ratios of sequentially paired specimens (collected > or = 96 h apart) may provide an objective indicator of ongoing marijuana or hashish use in this population.  相似文献   

3.
Subjects with a history of chronic marijuana use were screened for cannabinoids in urine specimens with the EMIT((R)) II Plus cannabinoids assay with a cut-off value of 50 ng/ml. All presumptively positive specimens were submitted for confirmatory analysis for the major urinary cannabinoid metabolite (Delta(9)-THC-COOH) by GC-MS with a cut-off value of 15 ng/ml. Creatinine was analyzed in each specimen as an index of dilution. Huestis and Cone [J. Anal. Toxicol. 22 (1998) 445] reported that serial monitoring of Delta(9)-THC-COOH to creatinine ratios in paired urine specimens collected at least 24h apart could differentiate new drug use from residual Delta(9)-THC-COOH excretion. The best accuracy (85.4%) for predicting new marijuana use was a Delta(9)-THC-COOH/creatinine ratio > or =0.5 (dividing the Delta(9)-THC-COOH to creatinine ratio of specimen 2 by the specimen 1 ratio). In a previous study in this laboratory [J. Anal. Toxicol. 23 (1999) 531], urine specimens were collected from chronic marijuana users at least 24h apart and dilute urine specimens (creatinine values <2.2 micromol/l) were excluded from the data analysis. The objective of the present study was to determine whether creatinine corrected urine specimens positive for cannabinoids could differentiate new marijuana use from the excretion of residual Delta(9)-THC-COOH in chronic users of marijuana based on the Huestis 0.5 ratio. Urine specimens (N=946) were collected from 37 individuals with at least 48h between collections. All urine specimens were included in the data review irrespective of creatinine concentration. The mean urinary Delta(9)-THC-COOH concentration was 302.4 ng/ml, mean Delta(9)-THC-COOH/creatinine ratio (ng/ml Delta(9)-THC-COOH/(mmol/l) creatinine) was 29.3 and the Huestis ratio calculation indicated new drug use in 83% of all sequentially paired urine specimens. The data were sub-divided into three groups (A-C) based on the mean Delta(9)-THC-COOH/creatinine values. Interindividual Delta(9)-THC-COOH/creatinine mean values ranged from 2.2 to 13.8 in group A (264 specimens, N=15 subjects) where 80.7% of paired specimens indicated new drug use. In group B, mean Delta(9)-THC-COOH/creatinine values ranged from 15.3 to 37.8 in 444 specimens (N=14 subjects) and 83.3% of paired specimens indicated new drug use. In group C, individual mean Delta(9)-THC-COOH/creatinine values were >40.1 (41.3-132.5) in 238 urine specimens (N=8 subjects) and 85.3% of paired urine specimens indicated new marijuana use. Correcting Delta(9)-THC-COOH excretion for urinary dilution and comparing Delta(9)-THC-COOH/creatinine concentration ratios of sequentially paired specimens (collected at least 48h apart) provided an objective indicator of new marijuana use in this population.  相似文献   

4.
A simple procedure based on a common silica gel column chromatography for the isolation of Delta9-tetrahydrocannabinolic acid A (Delta9-THCA-A) from hemp in a multi-milligram scale is presented. Further, the decarboxylation reaction of Delta9-THCA-A to the toxicologically active Delta9-tetrahydrocannabinol (Delta9-THC) at different analytical and under-smoking conditions is investigated. Maximal conversion in an optimised analytical equipment yields about 70% Delta9-THC. In the simulation of the smoking process, only about 30 % of the spiked substance could be recovered as Delta9-THC.  相似文献   

5.
Two homologs of 9-chloro-10-methoxy(9-methoxy-10-chloro) fatty acids were found in adipocere from the human neonate, and identified as 9-chloro-10-methoxy(9-methoxy-10-chloro)hexadecanoic acid and 9-chloro-10-methoxy(9-methoxy-10-chloro)-octadecanoic acid. The chemical structures of these compounds were confirmed by thinlayer chromatography, gas-liquid chromatography, gas chromatography-mass spectrometry, nuclear magnetic resonance spectrometry and elemental analysis. The adipocere contained approximately 7.2% 9-chloro-10-methoxy(9-methoxy-10-chloro) fatty acids in the total fatty acids.  相似文献   

6.

Volume Contents

Contents of Volume 9  相似文献   

7.

Other Index

Keyword Index Volume 9  相似文献   

8.

Authors Index

Authors Index Volume 9  相似文献   

9.
Gas chromatography tandem mass spectrometry (GC/MS-MS) analysis of 11-nor-carboxy-delta(9)-tetrahydrocannabinol (delta(9)-THC-COOH), the major metabolite of delta(9)-tetrahydrocannabinol, in biological samples is reported. The proposed method, using deuterated delta(9)-THC-COOH as an internal standard, is able to detect the major metabolite of cannabis derivatives at very low levels (picograms/millilitre) with high specificity. These characteristics render the proposed analytical procedure suitable for confirmatory analysis in drug testing for cannabis use.  相似文献   

10.
A sensitive analytical method was developed for quantitative analysis of delta(9)-tetrahydrocannabinol (delta(9)-THC), 11-nor-delta(9)-tetrahydrocannabinol-carboxylic acid (delta(9)-THC-COOH), cannabinol (CBN) and cannabidiol (CBD) in human hair. The identification of delta(9)-THC-COOH in hair would document Cannabis use more effectively than the detection of parent drug (delta(9)-THC) which might have come from environmental exposure. Ketamine was added to hair samples as internal standard for CBN and CBD. Ketoprofen was added to hair samples as internal standard for the other compounds. Samples were hydrolyzed with beta-glucuronidase/arylsulfatase for 2h at 40 degrees C. After cooling, samples were extracted with a liquid-liquid extraction procedure (with chloroform/isopropyl alcohol, after alkalinization, and n-hexane/ethyl acetate, after acidification), which was developed in our laboratory. The extracts were analysed before and after derivatization with pentafluoropropionic anhydride (PFPA) and pentafluoropropanol (PFPOH) using a Hewlett Packard gas chromatographer/mass spectrometer detector, in electron impact mode (GC/MS-EI). Derivatized delta(9)-THC-COOH was also analysed using a Hewlett Packard gas chromatographer/mass spectrometer detector, in negative ion chemical ionization mode (GC/MS-NCI) using methane as the reagent gas. Responses were linear ranging from 0.10 to 5.00 ng/mg hair for delta(9)-THC and CBN, 0.10-10.00 ng/mg hair for CBD, 0.01-5.00 ng/mg for delta(9)-THC-COOH (r(2)>0.99). The intra-assay precisions ranged from <0.01 to 12.40%. Extraction recoveries ranged from 80.9 to 104.0% for delta(9)-THC, 85.9-100.0% for delta(9)-THC-COOH, 76.7-95.8% for CBN and 71.0-94.0% for CBD. The analytical method was applied to 87 human hair samples, obtained from individuals who testified in court of having committed drug related crimes. Quantification of delta(9)-THC-COOH using GC/MS-NCI was found to be more convenient than GC/MS-EI. The latter may give rise to false negatives due to the detection limit.  相似文献   

11.
Recently potassium nitrite has been used as an adulterant to interfere with the analysis of 11-nor-delta 9-tetrahydro-cannabinol-9-carboxylic acid (THC-COOH) in urine. A comprehensive study of the THC-COOH and nitrite reaction chemistry and stability under various conditions is presented. Reverse phase high performance liquid chromatography (HPLC) and negative electrospray mass spectrometry (ESMS) results are given to substantiate the derived reaction mechanism and properties leading to reaction termination. The addition of potassium carbonate as a buffering agent prior to or following sample void as a means of preventing the formation of a nitroso-complexed form of the 11-nor-delta 9+-tetrahydrocannabinol-9-carboxylic acid is evaluated.  相似文献   

12.
目的对300℃焚烧后成人股骨样本进行9个miniSTR(D20S1082、D6S474、D12ATA63、D9S1122、D2S1776、D1S1627、D3S4529、D2S441、Amelogenin)基因座的检测与分型。方法样本为8根经300℃焚烧后的成人股骨,用改良酚-氯仿法提取烧骨DNA,在Mastercylcerpro梯度PCR仪上对9个miniSTR基因座分别进行扩增,3130基因分型仪检测并收集电泳结果,GeneMarkerV2.2.0软件计算扩增产物片段相对大小以及进行样本基因型分型。结果8根烧骨样本均能够提取到DNA,浓度平均值为25ng/μL,D260/D280值在1.7~1.9之间。9个miniSTR基因座在样本中的检出率在78%~100%之间,分型图谱较清晰,个别样本出现额外带。结论本文9个miniSTR基因座分型检测的方法,可用于对烧骨捡材的DNA分型检验。  相似文献   

13.
9个Y-STR基因座荧光复合扩增系统的法医学应用   总被引:4,自引:0,他引:4  
Shi MS  Li YB  Deng JQ  Ji Q  Yu XJ  Hou YP 《法医学杂志》2006,22(3):204-206,209
目的建立9个Y-STR基因座的复合扩增系统,提高Y-STR的法医学检测效能。方法6-FAM标记DYS434、Y-GATA-A10、DYS438、DYS439,HEX标记DYS531、DYS557、DYS448,TAMRA标记DYS456、DYS444引物,PCR复合扩增,毛细管电泳得到结果,考察扩增系统的个体识别能力、灵敏度、特异性、组织同一性。结果所建立的9个Y-STR复合扩增系统分型清晰,单倍型多样性达0.9968,特异性好,灵敏度高(0.5ngDNA),并且在男女混合斑检验上较常染色体STR分型更有优势。结论9个Y-STR复合扩增系统具有较高的识别能力,对建立Y染色体STR数据库,研究群体遗传学和进行法医学混合斑物证鉴定有重要意义。  相似文献   

14.
山东地区人群9个STR基因座遗传多态性及频率调查   总被引:1,自引:1,他引:0  
应用AmpFISTRProfilerPlus试剂盒及377型测序仪对山东地区200例无关个体血样进行了9个STR基因座多态性及频率调查,经X2检验,9个基因座基因频率均符合Hardg-Weinberg平衡定律,家系分析均符合孟德尔遗传规律,并应用于案件检验取得良好效果。  相似文献   

15.
目的建立犬的复合扩增体系对犬进行个体识别和亲权鉴定。方法用建立的犬复合扩增体系进行PCR反应,用ABI310型遗传分析仪对扩增产物进行检测。结果鉴定结果表明,9个犬STR基因座复合扩增体系,各个基因座扩增平衡,结果稳定。结论9个犬STR基因座复合扩增体系可以进行犬的个体识别和亲权鉴定。  相似文献   

16.
The quantitative analysis of 11-nor-D(9)-tetrahydrocannabinol-9-carboxylic acid (THCCOOH) in hair requires a sensitive method to detect a low-pg level. Before applying the method to real hair samples, the method was validated; in this study, we examined the uncertainty obtained from around the cut-off level of THCCOOH in hair. We calculated the measurement uncertainty (MU) of THCCOOH in hair as follows: specification of the measurand, identification of parameters using "cause and effect" diagrams, quantification of the uncertainty contributions using three factors, the uncertainty of weighing the hair sample, the uncertainty from calibrators and the calibration curve, and the uncertainty of the method precision. Finally, we calculated the degrees of freedom and the expanded uncertainty (EU). The concentration of THCCOOH in the hair sample with its EU was (0.60 ± 0.1) × 10(-4)ng/mg. The relative uncertainty percent for the measurand 0.60 × 10(-4)ng was 9.13%. In this study, we also selected different concentrations of THCCOOH in real hair samples and then calculated the EU, the relative standard uncertainty (RSU) of the concentration of THCCOOH in the test sample [u(r)(c0)], the relative uncertainty percent, and the effective degree of freedom (v(eff)). When the concentrations of THCCOOH approached the cut-off level, u(r)(c0) and the relative uncertainty percent increased but absolute EU and v(eff) decreased.  相似文献   

17.
A procedure has been developed to extract and recover minute amounts of delta-9-carboxytetrahydrocannabinol (THC-COOH) from urine. A new non-isotopic internal standard is introduced to permit a chromatographic assay of the metabolite. The method affords a 91% recovery of 20 ng/mL of the THC-COOH acid from spiked urine with the assurance of a 3.8% coefficient of variation.  相似文献   

18.
This article describes and evaluates a computer program for drafting the security agreements and related documents required by Article 9 of the Uni- form Commercial Code to create and perfect security interests in consumer goods and equipment. The authors suggest that such computer applications have great promise and invite further such research.  相似文献   

19.
A method is described for the determination of delta 9-tetrahydrocannabinol (delta 9-THC) in the saliva by the use of a combination of moving-precolumn injector and glass capillary gas chromatograph with electron capture detector (GC/ECD). There were no interfering peaks due to impurities around the peak of pentafluoropropyl derivative of delta 9-THC (delta 9-THC-PFP). This GC/ECD method was linear over the range of 5-200 ng/ml of delta 9-THC-PFP. The lower detection limit was approximately 1 ng/ml. delta 9-THC content in the saliva after experimental marihuana smoking was measured by this method. It was demonstrated that for at least 4 h after smoking the level of delta 9-THC was sufficient for detection.  相似文献   

20.
目的观察和分析STRtyper-10G系统9个STR基因座的突变特点。方法在7 707例肯定亲子关系的案件中,统计使用STRtyper-10G试剂盒(9个STR基因座)检测发现的突变事件,判断突变等位基因的来源,计算各基因座的突变率,分析突变特点。结果在9个基因座上共发现118个突变事件,均为1步突变;平均突变率为1.69×10-3(95%CI 1.40×10-3~2.03×10-3),各基因座的突变率介于0.78×10-3~2.84×10-3,父、母来源突变比例为9.64∶1;短、中、长等位基因的突变比值约为1∶8∶3,增加和减少重复单位的突变比值为1.29∶1。结论 9个基因座的突变率存在显著差异,实际检案时应结合各基因座的突变率进行PI值计算更为科学。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号