首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The differing effects of weathering and microbial degradation are described here in a comprehensive study that involved 50 different ignitable liquids from the Ignitable Liquids Database and Reference Collection. Examples of ignitable liquid residues from each of the main classes established by the American Society of Testing and Materials are presented. Weathering was accomplished via evaporation, whereas microbial degradation was carried out on soil at room temperature for periods of up to 21 days. Major trends included the rapid degradation of long n‐alkanes and monosubstituted alkyl benzenes (e.g., toluene, ethylbenzene, and propylbenzene). Surprisingly, some longer branched alkanes (e.g., trimethyloctanes) were also susceptible to microbial attack. Although all ignitable liquids examined suffered at least to some extent from microbial degradation, gasoline, petroleum distillates, and oxygenates were the most susceptible. Isoparaffinic and naphthenic–paraffinic products were the most resistant to microbial degradation.  相似文献   

2.
This paper reviews the literature on the analysis of vegetable (and animal) oil residues from fire debris samples. The examination sequence starts with the solvent extraction of the residues from the substrate. The extract is then prepared for instrumental analysis by derivatizing fatty acids (FAs) into fatty acid methyl esters. The analysis is then carried out by gas chromatography or gas chromatography-mass spectrometry. The interpretation of the results is a difficult operation seriously limited by a lack of research on the subject. The present data analysis scheme utilizes FA ratios to determine the presence of vegetable oils and their propensity to self-heat and possibly, to spontaneously ignite. Preliminary work has demonstrated that it is possible to detect chemical compounds specific to an oil that underwent spontaneous ignition. Guidelines to conduct future research in the analysis of vegetable oil residues from fire debris samples are also presented.  相似文献   

3.
《Science & justice》2020,60(4):381-387
Two-dimensional gas chromatography is a mature, yet underutilised, separation technique able to provide the high resolution and peak capacity required for the study of complex samples such as oils. This paper presents the development of a comprehensive two-dimensional gas chromatography method with flame ionisation detection to profile easily available ignitable liquids commonly found in arson cases. The use of 2D chromatograms to profile different potential ignitable liquids was also explored for classification purposes. The chemical fingerprints produced were visually different and allowed the distinction of all the petroleum products tested. How the chemical fingerprints of each fuel changed over time was also assessed. Each sample was subjected to weathering with aliquots (1 mL) being collected every half hour for a five-hour period. Principal component analysis of the resulting data was able to demonstrate the effect of weathering for all fuels tested and established that it was still possible to differentiate between the various petrochemicals even after weathering. The work demonstrates an optimised analytical method for petrochemical product analysis that provides forensic scientists with a robust, fast and sensitive technique that can be used to determine not only which ignitable liquid was used in a fire (even after the fact) but also provide information on the specific fuel used.  相似文献   

4.
The application of comprehensive two-dimensional gas chromatography (GC x GC) for the forensic analysis of ignitable liquids in fire debris is reported. GC x GC is a high resolution, multidimensional gas chromatographic method in which each component of a complex mixture is subjected to two independent chromatographic separations. The high resolving power of GC x GC can separate hundreds of chemical components from a complex fire debris extract. The GC x GC chromatogram is a multicolor plot of two-dimensional retention time and detector signal intensity that is well suited for rapid identification and fingerprinting of ignitable liquids. GC x GC chromatograms were used to identify and classify ignitable liquids, detect minor differences between similar ignitable liquids, track the chemical changes associated with weathering, characterize the chemical composition of fire debris pyrolysates, and detect weathered ignitable liquids against a background of fire debris pyrolysates.  相似文献   

5.
目的探讨丽蝇科大头金蝇蛹壳风化过程中脂质降解特征对死亡时间推断的应用价值。方法收集饲养的大头金蝇蛹壳,置于户外5d、10d后收回,-20℃保存,对照组清洗后直接冻存。样本行显微傅里叶变换红外光谱(micro-FTIR)检测,预处理后读取峰位、峰高,应用SPSS 19.0进行统计学分析。结果与对照组相比,5d和10d组脂质VasCH_3峰位变化无统计学意义,VasCH_2峰位蓝移,VsCH_2吸收峰消失,仅10d组VsCH_3峰位红移,除5d组VsCH_3外,各吸收峰强度均降低;与5d组相比,10d组所有吸收峰强度均降低,VsCH_3峰位红移,其余各吸收峰的峰位变化均无统计学意义。结论应用micro-FTIR技术检测大头金蝇蛹壳风化过程中脂质的降解特征为法医学死亡时间推断提供新思路,具有一定的应用潜力。  相似文献   

6.
Laudanosine, reticuline, codamine, and laudanine are members of the tetrahydrobenzylisoquinoline family of natural products. These alkaloids are present in the opium poppy, Papaver somniferum, and are subsequently found as impurities in clandestinely processed morphine. Morphine is then synthesized to heroin using hot acetic anhydride. During the course of this study, it was determined that these four tetrahydrobenzylisoquinolines undergo degradation to a series of 18 neutral impurities when subjected to hot acetic anhydride. Based on the degradation pathway, these new impurities were categorized into two sets of impurities called the C1-acetates compounds and the stilbene compounds. Synthesis, isolation, and structural elucidation information is provided for the tetrahydrobenzylisoquinoline alkaloids, and the new neutral impurities have been studied. Several hundred authentic heroin samples were analyzed using an established heroin signature program method. This methodology features the detection of trace neutral impurities present in heroin samples. It was determined that all 18 new impurities were detected in various quantities in four different types of heroin samples. Analytical results featuring these new impurities are reported for South American-, Southwest Asian-, Mexican-, and Southeast Asian-type heroin samples. These new impurities, coupled with other established forensic markers, enhance the ability to classify illicit heroin samples.  相似文献   

7.
Evidentiary samples submitted to a forensic DNA laboratory occasionally yield DNA that is degraded. Samples of intact chromosomal DNA (both nuclear and mitochondrial) were subjected to a heating protocol to induce DNA degradation. The DNAs were then analyzed using a multiplex PCR assay that amplifies targets of low and high molecular weight on the X/Y and mitochondrial chromosomes. If degradation is random, the amplification of larger DNA targets should be more adversely affected by degradation than smaller targets. In nuclear and mitochondrial DNA from a male donor, exhibiting degradation, DNA quantity estimates based upon higher molecular weight amplicons (HMW) are significantly lower than estimates made using low molecular weight (LMW) Q‐TAT amplicons. DNA degradation estimated using this approach correlated well with actual fluorescence associated with HMW and LMW STR alleles amplified from the same genomic DNA templates. Q‐TAT is thus useful not only as a quantitation tool, but also as an indicator of template degradation.  相似文献   

8.
自动热脱附气相色谱-质谱法分析火场助燃剂汽油成分   总被引:1,自引:0,他引:1  
目的建立检验纵火案件现场燃烧残留物中助燃剂汽油成分的方法。方法利用自动热脱附技术对火场残留物中的助燃剂进行富集、浓缩、脱附后经气-质联用仪(GG-MS)分析。结果结合现场燃烧环境运用目标化合物法能够判定是否含有助燃剂汽油成分。结论该方法简便易行。  相似文献   

9.
Biodegradation can result in selective removal of many of the compounds required for the identification of an ignitable liquid. In this study, the effects of microbial degradation on tiki torch fuel, lamp oil, and turpentine are reported. Samples of soil spiked with 20 μL of the liquids were stored at room temperature for up to 7 days. The ignitable liquids were then recovered using passive headspace concentration onto charcoal strips followed by solvent elution using pentane. Microbial degradation of tiki torch fuel resulted in the loss of the n-alkanes relative to the branched alkanes. Changes in the profile of the lamp oil were minor due to the highly branched nature of its alkanes. Microbial degradation of turpentine resulted in the selective loss of limonene and o-cymene. Overall, significant degradation by microbial action could result in the inability to identify the presence of an ignitable liquid or misclassify the ignitable liquid found.  相似文献   

10.
In November 2018, Butte County, California, was decimated by the Camp Fire, the deadliest wildfire in state history. Over 150,000 acres were destroyed, and at its peak, the fire consumed eighty acres per minute. The speed and intensity of the oncoming flames killed scores of people, and weeks before the fire was contained, first responders began searching through the rubble of 18,804 residences and commercial buildings. As with most mass disasters, conventional identification modalities (e.g., fingerprints, odontology, hardware) were utilized to identify victims. The intensity and duration of the fire severely degraded most of the remains, and these approaches were useful in only 22 of 84 cases. In the past, the remaining cases would have been subjected to conventional DNA analysis, which may have required months to years. Instead, Rapid DNA technology was utilized (in a rented recreational vehicle outside the Sacramento morgue) in the victim identification effort. Sixty-nine sets of remains were subjected to Rapid DNA Identification and, of these, 62 (89.9%) generated short tandem repeat profiles that were subjected to familial searching; essentially all these profiles were produced within hours of sample receipt. Samples successfully utilized for DNA identification included blood, bone, liver, muscle, soft tissue of unknown origin, and brain. In tandem with processing of 255 family reference samples, 58 victims were identified. This work represents the first use of Rapid DNA Identification in a mass casualty event, and the results support the use of Rapid DNA as an integrated tool with conventional disaster victim identification modalities.  相似文献   

11.
Identification of an ignitable liquid in fire debris evidence can be complicated due to evaporation of the liquid, matrix interferences, and thermal degradation of both the liquid and the matrix. In this research, liquids extracted from simulated fire debris were compared to the original liquid using multivariate statistical procedures. Neat and evaporated gasoline and kerosene standards were spiked onto nylon carpet, which was subsequently burned. The ignitable liquid residues were extracted using a passive headspace procedure and analyzed by gas chromatography-mass spectrometry. Pearson product moment correlation coefficients, hierarchical cluster analysis, and principal components analysis were used to compare the liquids extracted from the carpet to the corresponding neat liquid. For each procedure, association of the extracts according to liquid type was possible, albeit not necessarily to the specific evaporation level. Of the three procedures investigated, principal components analysis offered the most promise since contributions from matrix interferences were essentially eliminated.  相似文献   

12.
Abstract: In fire debris analysis, weathering of ignitable liquids and matrix interferences can make the identification of ignitable liquid residues (ILRs) difficult. An objective method was developed to associate ILRs with the corresponding neat liquid with discrimination from matrix interferences using principal components analysis (PCA) and Pearson product moment correlation (PPMC) coefficients. Six ignitable liquids (gasoline, diesel, ultra pure paraffin lamp oil, adhesive remover, torch fuel, paint thinner) were spiked onto carpet, which was burned, then extracted using passive headspace extraction, and analyzed by gas chromatography‐mass spectrometry. Both light and heavy burn conditions were investigated. In the PCA scores plot, ignitable liquids were discriminated based on alkane and aromatic content. All ILRs were successfully associated with the corresponding neat liquid using both PCA and PPMC coefficients, regardless of the extent of burning. The method developed in this research may make the association of ILRs with corresponding neat liquids more objective.  相似文献   

13.
1,4-Dihydropyridines calcium channel antagonists (1,4-DHP CCAs) are photolabile and the products of their photodecomposition have no pharmaceutical activity. In our previous work we have presented a screening procedure for eleven 1,4-DHPs in plasma by LC-MS-MS using multiple reaction motoring. The laboratory process includes preparation and storage of stock solutions, plasma storage, solid-phase extraction, reconstitution of extracts and storage time in an autosampler for LC-MS-MS analysis. Prior to validation of the analytical procedure, we have tested the stability of these compounds by exposure to light. Methanolic solutions have been exposed to laboratory and UV light and the stability of the compounds in plasma was tested by exposure of spiked plasma samples to laboratory light at room temperature. Stability during freeze-thaw cycles and stability during 2 month storage at -20 degrees C have been tested as well. Products of photodecomposition have been identified after forced degradation and the degree of degradation has been quantified using LC-UV-DAD and LC-MS-MS, respectively. A 96% degradation after only 2h has been observed when solutions of nifedipine or nisoldipine were exposed to laboratory light in clear glass vials. In plasma samples degradation was 25% in only 2h for both compounds. The main degradation product was produced by oxidation of the dihydropyridinic ring resulting in the pyridine analogue that has been described as the first metabolite in the metabolic pathway. Only minor degradation was found for the other tested compounds after 2h light exposure in methanolic solutions. Furthermore, lercanidipine and nicardipine were also degradated by esterhydrolysis. Several additional minor degradation products were found for the other tested 1,4-DHPs, however, some of them could not be identified. Preconditions for storage and handling of plasma samples prior to and during analysis for 1,4-DHP CCAs are suggested in order to avoid photodecomposition of the analytes.  相似文献   

14.
Abstract: Mitochondrial DNA analysis of skeletal material is invaluable in forensic identification, although results can vary widely among remains. Previous studies have included bones of different ages, burial conditions, and even species. In the research presented, a collection of human remains that lacked major confounders such as burial age, interment style, and gross environmental conditions, while displaying a very broad range of skeletal degradation, were examined for both mitochondrial DNA (mtDNA) quality and quantity. Overall skeletal weathering, individual bone weathering, and bone variety were considered. Neither skeletal nor bone weathering influenced DNA quality or quantity, indicating that factors that degrade bone do not have the same effect on DNA. In contrast, bone variety, regardless of weathering level, was a significant element in DNA amplification success. Taken together, the results indicate that neither skeletal nor individual bone appearance are reliable indicators of subsequent mtDNA typing outcomes, while the type of bone assayed is.  相似文献   

15.
《Science & justice》2014,54(6):401-411
In the investigation of arson, evidence connecting a suspect to the fire scene may be obtained by comparing the composition of ignitable liquid residues found at the crime scene to ignitable liquids found in possession of the suspect. Interpreting the result of such a comparison is hampered by processes at the crime scene that result in evaporation, matrix interference, and microbial degradation of the ignitable liquid.Most commonly, gasoline is used as a fire accelerant in arson. In the current scientific literature on gasoline comparison, classification studies are reported for unevaporated and evaporated gasoline residues. In these studies the goal is to discriminate between samples of several sources of gasoline, based on a chemical analysis. While in classification studies the focus is on discrimination of gasolines, for forensic purposes a likelihood ratio approach is more relevant.In this work, a first step is made towards the ultimate goal of obtaining numerical values for the strength of evidence for the inference of identity of source in gasoline comparisons. Three likelihood ratio methods are presented for the comparison of evaporated gasoline residues (up to 75% weight loss under laboratory conditions). Two methods based on distance functions and one multivariate method were developed. The performance of the three methods is characterized by rates of misleading evidence, an analysis of the calibration and an information theoretical analysis.The three methods show strong improvement of discrimination as compared with a completely uninformative method. The two distance functions perform better than the multivariate method, in terms of discrimination and rates of misleading evidence.  相似文献   

16.
Headspace analysis by extraction/GC-MS is a common method of detecting volatile hydrocarbon accelerants in fire debris samples. Solid-phase microextraction was tested to determine if there is selective extraction of chemically distinct compounds. It was found that both the polydimethylsiloxane (PDMS) and Carboxen/PDMS solid phase microextraction fibers show preferential extraction of aliphatic or aromatic compounds from the headspace depending on fiber type and temperature. The Carboxen/PDMS fiber type showed particular (although not exclusive) selectivity for extraction of aromatic hydrocarbons. Other experimental considerations of SPME are noted.  相似文献   

17.
目的建立火场中汽油燃烧残留物ATD-GC-MS检验结果评价方法。方法将模拟燃烧样品用ATD-GC-MS法检验,检验结果通过对芳烃、烷烃、茚满、和萘系列的4个特征离子色谱图与已知汽油作比较,并利用向量夹角法计算样品与汽油色谱指纹图的相似度来对检验结果作评价。结果有汽油作助燃剂的模拟燃烧样品与汽油色谱指纹图的相似度一般大于90%,无汽油作助燃剂的样品则在60%以下。结论利用样品的4个特征离子色谱图与已知汽油作比较,并结合样品与汽油色谱指纹图相似度的计算,能对检验结果作出客观、可靠和准确的评价。  相似文献   

18.
One of the aims of fire investigations is to identify associations among accelerants according to their source. In this study, 50 gasoline samples--representing five brands--were analyzed using solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). Chemometric procedures, such as principal component analysis (PCA) and discriminant analysis (DA), were applied to a data matrix obtained by the target compound chromatogram method, to discriminate samples according to their brand. PCA was successful in finding a natural grouping of samples according to their brand, suggesting that aromatic compounds were more useful than aliphatics for the purpose of this study. DA, if applied to aromatic compounds, gave both a classification ability and a prediction ability of 100%. The outstanding results obtained by this work provide the basis of a data matrix that could be used in real cases of arson to link a sample of unevaporated gasoline to its brand or refinery.  相似文献   

19.
Arson is a significant problem around the world, and is a crime which results in a low number of convictions. The scene of an arson can be varied, commercial, residential or national park, and recently cases have been identified which were initiated by a lit match. Matches can be recovered from a scene, usually in a burnt condition. The benefit of analysing unburnt matches has been researched previously [1,2]. In most cases, burnt matches are recovered from scenes, and therefore the research was extended to investigate the potential of using IRMS to analyse burnt matches. This includes samples which have been exposed to petrol, and various fire extinguishing chemicals.Matches were sectioned to reveal central unburnt portions of wood and analysed by isotope ratio mass spectrometry (IRMS). The stable isotope profile (SIP) of the wooden matchstick samples was unaffected by the presence of both petrol and a variety of fire extinguisher chemicals. Any changes seen could be attributed to the natural variability of isotopic composition encountered in a natural material such as wood. These findings were confirmed by the isotope analysis of 19 matchstick samples placed in mock fire training scenarios. The data was examined using a paired t-test and Hotellings T2 test for a single sample.  相似文献   

20.
A multistep classification scheme was used to detect and classify ignitable liquid residues in fire debris into the classes defined by the ASTM E1618‐10 standard method. The total ion spectra (TIS) of the samples were classified by soft independent modeling of class analogy (SIMCA) with cross‐validation and tested on fire debris. For detection of ignitable liquid residue, the true‐positive rate was 94.2% for cross‐validation and 79.1% for fire debris, with false‐positive rates of 5.1% and 8.9%, respectively. Evaluation of SIMCA classifications for fire debris relative to a reviewer's examination led to an increase in the true‐positive rate to 95.1%; however, the false‐positive rate also increased to 15.0%. The correct classification rates for assigning ignitable liquid residues into ASTM E1618‐10 classes were generally in the range of 80–90%, with the exception of gasoline samples, which were incorrectly classified as aromatic solvents following evaporative weathering in fire debris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号