首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A breath-alcohol screening device, Alcolmeter pocket model, was evaluated in a controlled field trial with policeman operating the instruments. The results of tests made with subjects before they drank alcohol were always zero. The standard deviation (S.D.) of breath alcohol determinations increased with increase in the concentration of alcohol in the sample, being 0.036 mg/ml at a mean blood-ethanol concentration of 0.53 mg/ml. The S.D. varied among subjects tested (from 0.022 to 0.053 mg/ml) as well as among the instruments used (from 0.023 to 0.054 mg/ml). The breath test results were on average less than the actual blood-ethanol concentrations when a 2100: 1 blood/breath ratio was used to calibrate the Alcolmeter device. Blood ethanol (x) and Alcolmeter readings (y) were highly correlated (r = 0.95 +/- 0.018) and the regression equation was y = -0.017 + 0.95x. At a mean blood-ethanol concentration of 0.50 mg/ml, the Alcolmeter instrument will indicate 0.46 mg/ml on average. The standard error estimate was 0.085 mg/ml, being 17% of the mean Alcolmeter reading and this corresponds to 95% confidence limits of +/- 0.17 mg/ml. The results of this study show that Alcolmeter pocket-model is a useful device for breath-alcohol screening purposes at a blood-alcohol level of 0.50 mg/ml. A blood/breath ratio of 2300 should be used to calibrate the Alcolmeter device.  相似文献   

2.
An Alcolmeter Pocket Model breath alcohol device, based on an electrochemical (fuel cell) oxidation principle for ethanol analysis, has been evaluated under in vitro conditions. The result of a test is displayed on an analogue meter within 20 – 30 seconds after sampling; replicate tests may be made within 3 – 5 minutes. The electrochemical detector used was found to respond to acetaldehyde, methanol, isopropanol and n-propanol vapours besides ethanol, but it was insensitive to acetone vapour. The Alcolmeter response with a 0 – 2.0 mg/ml scale was linearly related to ethanol vapour concentration up to 1.0 mg/ml blood alcohol equivalent concentration; above this level the response was curvilinear, the Alcolmeter reading being too low. The standard deviation of an ethanol vapour determination in vitro was ±0.0175 mg/ml at a mean concentration of 0.902 mg/ml. The accuracy of the device expressed as percent recovery at 0.50, 1.0 and 1.4 mg/ml blood alcohol concentrations was 96.8%, 98.3%, and 88.3%, respectively. When the Alcolmeter was calibrated at 0.50 mg/ml and used occasionally each day over an 18-day period, the drop in initial calibration was 0.01 mg/ml per week.  相似文献   

3.
This paper reports results from a field trial with a breath-alcohol screening device--Alcolmeter pocket model. Breath tests were made with drivers apprehended during routine controls (road-blocks), for traffic violations and those involved in traffic accidents. Of 908 roadside breath tests made with chemical reagent tubes, 343 showed zero alcohol (no colour change) and these results were confirmed by Alcolmeter. Alcohol was detected in 191 tests but the level was judged as being below the legal limit of 0.50 mg/ml. The Alcolmeter results, however, ranged from 0 to 1.22 mg/ml (mean 0.21 mg/ml) and 15 individuals (7.8%) were above the legal limit. There were 373 positive chemical tube breath screening tests whereas in 5 cases (1.3%) Alcolmeter indicated a blood-alcohol level below 0.50 mg/ml. Duplicate determinations with the Alcolmeter device were highly correlated r = 0.93 +/- 0.02 (+/- S.E.), P less than 0.001. The standard deviation of a single breath-alcohol analysis under field conditions was +/- 0.10 mg/ml which corresponds to a coefficient of variation of 10%. The time interval between positive roadside breath test and blood-sampling ranged from 5 to 220 min (median 62 min). The results were therefore adjusted by 0.15 mg/ml per hour to compensate for ethanol metabolised between the time of sampling blood and breath. The corrected blood and breath values were well correlated r = 0.84 +/- 0.03, P less than 0.001 but the predictive power of the regression relationship was poor. The regression equation was y = 0.27 +/- 0.65x and the standard error estimate was +/- 0.21 mg/ml at the mean concentration of ethanol of 1.0 mg/ml.  相似文献   

4.
Gastroesophageal reflux disease (GERD) is widespread in the population among all age groups and in both sexes. The reliability of breath alcohol analysis in subjects suffering from GERD is unknown. We investigated the relationship between breath-alcohol concentration (BrAC) and blood-alcohol concentration (BAC) in 5 male and 5 female subjects all suffering from severe gastroesophageal reflux disease and scheduled for antireflux surgery. Each subject served in two experiments in random order about 1-2 weeks apart. Both times they drank the same dose of ethanol (approximately 0.3 g/kg) as either beer, white wine, or vodka mixed with orange juice before venous blood and end-expired breath samples were obtained at 5-10 min intervals for 4 h. An attempt was made to provoke gastroesophageal reflux in one of the drinking experiments by applying an abdominal compression belt. Blood-ethanol concentration was determined by headspace gas chromatography and breath-ethanol was measured with an electrochemical instrument (Alcolmeter SD-400) or a quantitative infrared analyzer (Data-Master). During the absorption of alcohol, which occurred during the first 90 min after the start of drinking, BrAC (mg/210 L) tended to be the same or higher than venous BAC (mg/dL). In the post-peak phase, the BAC always exceeded BrAC. Four of the 10 subjects definitely experienced gastric reflux during the study although this did not result in widely deviant BrAC readings compared with BAC when sampling occurred at 5-min intervals. We conclude that the risk of alcohol erupting from the stomach into the mouth owing to gastric reflux and falsely increasing the result of an evidential breath-alcohol test is highly improbable.  相似文献   

5.
A new breath alcohol (ethanol) analyzer has been developed, which allows free exhalation, standardizes measured exhaled alcohol concentration to fully saturated water vapor at a body temperature of 37 degrees C (43.95 mg/L) and includes a built-in self-calibration system. We evaluated the performance of this instrument by comparing standardized alcohol concentration in freely expired breath (BrAC) with arterial (ABAC) and venous (VBAC) blood alcohol concentrations in fifteen healthy volunteers who drank 0.6 g of alcohol per kg body weight. The precision (coefficient of variation, CV) of the analyzer based on in vivo duplicate measurements in all phases of the alcohol metabolism was 1.7%. The ABAC/BrAC ratio was 2251+/-46 (mean+/-S.D.) in the post-absorptive phase and the mean bias between ABAC and BrAC x 2251 was 0.0035 g/L with 95% limits of agreement of 0.033 and -0.026. The ABAC and BrAC x 2251 were highly correlated (r=0.998, p<0.001) and the regression relationship was ABAC = 0.00045 + 1.0069 x (BrAC x 2251) indicating excellent agreement and no fixed or proportional bias. In the absorption phase, ABAC exceeded BrAC x 2251 by at most 0.04+/-0.03 g/L when tests were made at 10 min post-dosing (p<0.05). The VBAC/BrAC ratio never stabilized and varied continuously between 1834 and 3259. There was a proportional bias between VBAC and BrAC x 2251 (ABAC) in the post-absorptive phase (p<0.001). The pharmacokinetic analysis of the elimination rates of alcohol and times to zero BAC confirmed that BrAC x 2251 and ABAC agreed very well with each other, but not with VBAC (p<0.001). We conclude that this new breath analyzer using free exhalation has a high precision for in vivo testing. The BrAC reflects very accurately ABAC in the post-absorption phase and substantially well in the absorption phase and thereby reflects the concentration of alcohol reaching the brain. Our findings highlight the magnitude of arterio-venous differences in alcohol concentration and support the use of breath alcohol analyzers as a stand-alone test for medical and legal purposes.  相似文献   

6.
Concentration-time profiles of ethanol were determined for venous whole blood and end-expired breath during a controlled drinking experiment in which healthy men (n=9) and women (n=9) drank 0.40-0.65 g ethanol per kg body weight in 20-30 min. Specimens of blood and breath were obtained for analysis of ethanol starting at 50-60 min post-dosing and then every 30-60 min for 3-6 h. This protocol furnished 130 blood-breath pairs for statistical evaluation. Blood-ethanol concentration (BAC, mg/g) was determined by headspace gas chromatography and breath-ethanol concentration (BrAC, mg/2l) was determined with a quantitative infrared analyzer (Intoxilyzer 5000S), which is the instrument currently used in Sweden for legal purposes. In 18 instances the Intoxilyzer 5000S gave readings of 0.00 mg/2l whereas the actual BAC was 0.08 mg/g on average (range 0.04-0.15 mg/g). The remaining 112 blood- and breath-alcohol measurements were highly correlated (r=0.97) and the regression relationship was BAC=0.10+0.91BrAC and the residual standard deviation (S.D.) was 0.042 mg/g (8.4%). The slope (0.91+/-0.0217) differed significantly from unity being 9% low and the intercept (0.10+/-0.0101) deviated from zero (t=10.2, P<0.001), indicating the presence of both proportional and constant bias, respectively. The mean bias (BAC - BrAC) was 0.068 mg/g and the 95% limits of agreement were -0.021 and 0.156 mg/g. The average BAC/BrAC ratio was 2448+/-540 (+/-S.D.) with a median of 2351 and 2.5th and 97.5th percentiles of 1836 and 4082. We found no significant gender-related differences in BAC/BrAC ratios, being 2553+/-576 for men and 2417+/-494 for women (t=1.34, P>0.05). The mean rate of ethanol disappearance from blood was 0.157+/-0.021 mg/(g per hour), which was very close to the elimination rate from breath of 0.161+/-0.021 mg/(2l per hour) (P>0.05). Breath-test results obtained with Intoxilyzer 5000S (mg/2l) were generally less than the coexisting concentrations of ethanol in venous blood (mg/g), which gives an advantage to the suspect who provides breath compared with blood in cases close to a threshold alcohol limit.  相似文献   

7.
目的研究血中酒精浓度值(BAC值)的推算关系。方法对327位自愿受试者饮酒后测定其血中酒精时浓曲线进行分析,计算血中酒精清除率。结果血中酒精消除呈线性,327例血液中酒精消除线性相关系数为0.985±0.019,最小绝对值为0.98,最大绝对值1.000,消除斜率绝对值平均为(0.136±0.037)mg/mL/h,最小绝对值为0.075mg/mL/h,最大绝对值0.266mg/mL/h。结论血液中酒精浓度的推算可根据线性消除关系回推,血液中酒精浓度按照每小时下降0.10mg进行回推算。  相似文献   

8.
A study was designed to examine the elimination rate of alcohol from the body of the local Chinese after consumption of different types of alcoholic drinks. The breath alcohol of 184 healthy volunteers was determined and converted into blood alcohol levels after they finished drinking. Information on the type and volume of alcoholic drinks consumed, age group, sex, drinking habit, and drinking on empty stomach or with/after meal was recorded for each participant. The results show that the elimination rate of an individual can be explained in terms of physiological variables including sex and drinking habit. The determined elimination rates allow forensic toxicologists to back calculate the blood alcohol concentration (BAC) of the drivers at the time of accident in drunk driving cases. The elimination rates of blood alcohol at 95% prediction intervals for male and female are in the range of 9.5-23.8 mg/100 ml/h and 11.1-37.1 mg/100 ml/h, respectively.  相似文献   

9.
The rate and kinetic order of ethanol elimination was evaluated in human volunteers. Part I of the study involved dosing individuals with alcoholic beverages on two separate occasions. Breathalyzer tests were performed at 15-min intervals for a period of 5 h. Attention was focused on values obtained after peak blood ethanol levels had been reached. The second part of the study included having samples drawn from alcoholics at predetermined intervals during recovery from alcoholic intoxication. Blood ethanol concentration data was analyzed for kinetic order and a comparison of ethanol elimination rates of alcoholics and non-alcoholics was made. The predicative capability of estimating a BAC from both the zero and first order theories was also investigated.It was concluded that ethanol elimination is a zero order process. For subjects classified as non-drinkers (consume less than 6 ounces of ethanol/month), the mean ethanol elimination rate as determined in the study was 12 ± 4 mg/h. For subjects classified as social drinkers (consume more than 6 ounces but less than 30 ounces of ethanol/month), the mean ethanol elimination rate was 15 ± 4 mg%/h, and for alcoholics, the mean ethanol elimination rate was 30 ± 9 mg%/h. These results indicate that the rate of ethanol elimination increases with drinking experience.  相似文献   

10.
Abstract: Between 2003 and 2009, 54,255 breath test sequences were performed on 129 AlcoSensor IV–XL evidential instruments in Orange County, CA. The overall mean breath alcohol concentration and standard deviation from these tests was 0.141 ± 0.051 g/210 L. Of these test sequences, 38,580 successfully resulted in two valid breath alcohol results, with 97.5% of these results agreeing within ±0.020 g/210 L of each other and 86.3% within ±0.010 g/210 L. The mean absolute difference between duplicate tests was 0.006 g/210 L with a median of 0.004 g/210 L. Of the 2.5% of duplicate test results that did not agree within ±0.020 g/210 L, 95% of these had a breath alcohol concentration of 0.10 g/210 L or greater and 77% had an alcohol concentration of 0.15 g/210 L or greater. The data indicate that the AlcoSensor IV–XL can measure a breath sample for alcohol concentration with adequate precision even amid the effects of biological variations.  相似文献   

11.
A novel breath-alcohol analyzer based on the standardization of the breath alcohol concentration (BrAC) to the alveolar-air water vapour concentration has been developed and evaluated. The present study compares results with this particular breath analyzer with arterial blood alcohol concentrations (ABAC), the most relevant quantitative measure of brain alcohol exposure. The precision of analysis of alcohol in arterial blood and breath were determined as well as the agreement between ABAC and BrAC over time post-dosing. Twelve healthy volunteers were administered 0.6g alcohol/kg bodyweight via an orogastric tube. Duplicate breath and arterial blood samples were obtained simultaneously during the absorption, distribution and elimination phases of the alcohol metabolism with particular emphasis on the absorption phase. The precision of the breath analyzer was similar to the determination of blood alcohol concentration by headspace gas chromatography (CV 2.40 vs. 2.38%, p=0.43). The ABAC/BrAC ratio stabilized 30min post-dosing (2089±99; mean±SD). Before this the BrAC tended to underestimate the coexisting ABAC. In conclusion, breath alcohol analysis utilizing standardization of alcohol to water vapour was as precise as blood alcohol analysis, the present "gold standard" method. The BrAC reliably predicted the coexisting ABAC from 30min onwards after the intake of alcohol.  相似文献   

12.
The goal of the investigation was to research the influence of sex hormones on the elimination kinetics of ethanol. Forty-seven healthy men (average age 25+/-6.1 years) and 61 healthy women (average age 24+/-2.4 years) received 0.79-0.95g of ethanol/kg body weight in the form of an alcohol beverage of their choice. The target concentration for both sexes was a blood alcohol concentration (BAC) of 1.10g/kg. Blood samples for the determination of the ethanol concentration followed in the elimination phase in 10-20min intervals. The sex hormone levels (estradiol, progesterone and testosterone) were determined concomitantly from the serum. In men, the mean testosterone concentration was 5.3+/-1.6ng/ml, the mean estradiol concentration was 34.6+/-13.6pg/ml and the mean progesterone concentration was 0.9+/-0.3ng/ml. In women, the mean estradiol concentration was 47.6+/-52.6pg/ml and the mean testosterone concentration was 0.8+/-0.4ng/ml. Progesterone displayed a so-called dummy effect in women. In the high progesterone group (n=11), the mean concentration was 11.1+/-3.5ng/ml and in the low progesterone group (n=50) the mean was 0.6+/-0.3ng/ml. The mean hourly elimination rate (beta60) was 0.1677+/-0.0311g/kg/h in men. In women, the mean hourly elimination rate was 0.2044+/-0.0414g/kg/h in the high progesterone group and 0.1850+/-0.0276g/kg/h in the low progesterone group (p<0.05). The beta60 for women in the low progesterone group was significantly higher than that of the men, whose progesterone levels fell within a similar range (p>0.01). These results allow one to conclude that the gender differences in the pharmacokinetics of ethanol can partly, but not completely, be explained by progesterone levels.  相似文献   

13.
Legal driving limits are set coequally with 0.5 g/L blood alcohol concentration (BAC) or 0.25 mg/L breath alcohol concentration (BrAC) in Austria as well as in other European countries. As mostly some time elapses between BrAC measurement and driving offence, a back calculation of alcohol concentrations is often required. The calculation of hourly BrAC elimination rates can thereby help to avoid unnecessary variances. A study with 59 participants was performed under social conditions. BrAC was determined with the legally accredited Alcotest 7110 MK III A every 30 min, and concomitantly venous blood samples were drawn. Five hundred and four BrAC/BAC value pairs were evaluated. The overall mean peak BrAC was calculated with 0.456 mg/L (±0.119 mg/L standard deviation). The mean hourly BrAC elimination rate was overall determined with 0.082 mg/L per h (0.050–0.114, 95% range). Mean rate of females (0.087 mg/L h−1) and the according 95% limits were statistically significantly higher than of males (mean rate 0.078 mg/L h−1, p < 0.04). Our results confirm the possibility to implement hourly BrAC elimination rates, provided that adequate statistical ranges and basic forensic scientific rules that have been set up for alcohol back calculations are observed.  相似文献   

14.
The aim of this study was to determine if inability to complete a breath alcohol test successfully, using a Lion Alcolmeter SD-2 or Drager Alcotest 7110, was related to any of the standard parameters obtained from the lung function spirometry test. A total of 153 subjects referred to a clinical laboratory for routine lung function testing were tested using the Alcolmeter, 158 using the Alcotest, with 69 subjects completing tests on both instruments. Of the 153 patients who volunteered to use the Alcolmeter, 49 (32%) were unable to produce a valid test effort on this instrument. One subject failed to complete a satisfactory test using the Alcotest, and one was unable to master the technique. There was considerable overlap of the minimum value for each of the lung function parameters of those subjects who could or could not successfully complete the breath alcohol test. It is recommended that changes are made to both of the instruments, the techniques used and the legislation, to minimize the number of breath alcohol testing failures and to reduce the variability of the results.  相似文献   

15.
Anecdotal reports suggest that high environmental or occupational exposures to the fuel oxygenate methyl tert-butyl ether (MTBE) may result in breath concentrations that are sufficiently elevated to cause a false positive on commercial breath-alcohol analyzers. We evaluated this possibility in vitro by establishing a response curve for simulated breath containing MTBE in ethanol. Two types of breath-alcohol analyzers were evaluated. One analyzer's principle of operation involves in situ wet chemistry (oxidation of ethanol in a potassium dichromate solution) and absorption of visible light. The second instrument uses a combination of infrared absorption and an electrochemical sensor. Both types of instruments are currently used, although the former method represents older technology while the latter method represents newer technology.The percent blood alcohol response curve was evaluated over a breath concentration range thought to be relevant to high-level environmental or occupational exposure (0-361 microg/l). Results indicate that MTBE positively biases the response of the older technology Breathalyzer when evaluated as a single constituent or in combination with ethanol. We conclude that a false positive is possible on this instrument if the MTBE exposure is very high, recent with respect to testing, and occurs in combination with ethanol consumption. The interference can be identified on the older technology instrument by a time dependent post-reading increase in the instrument response that does not occur for ethanol alone. In contrast, the newer technology instrument using infrared and electrochemical detectors did not respond to MTBE at lower levels (0-36 microg/l), and at higher levels (>72 microg/l) the instrument indicated an "interference" or "error". For this instrument, a false positive does not occur even at high MTBE levels in the presence of ethanol.  相似文献   

16.
A method for the determination of blood alcohol concentration by headspace analysis using an electrochemical detector is described. A determination can be made within 2 min, and only 0.1 ml of blood is required for each analysis. The detector response was linearly related to ethanol concentrations up to 3.0 mg/ml. The standard deviation of a single determination was +/- 0.014 mg/ml. The accuracy of the method based on comparison with an enzymatic (alcohol dehydrogenase) technique was high, the mean recovery being 102.2% of the attributed concentration. The ease of the operation and fast analysis time make the method ideal for serial determinations, for example during mass screening of biological samples for ethyl alcohol in forensic and toxicology laboratories.  相似文献   

17.
The stability of ethanol in antemortem blood stored under various conditions has been widely studied. Antemortem blood samples stored at refrigerated temperature, at room temperature, and at elevated temperatures tend to decrease in ethanol concentration with storage. It appears that the stability of ethanol in blood exposed to temperatures greater than 38°C has not been evaluated. The case presented here involves comparison of breath test results with subsequent analysis of blood drawn at the time of breath testing. However, the blood tubes were in a refrigerator fire followed by refrigerated storage for 5 months prior to analysis by headspace gas chromatography. The subject’s breath was tested twice using an Intoxilyzer 8000. The subject’s blood was tested in duplicate using an Agilent headspace gas chromatograph. The measured breath ethanol concentration was 0.103 g/210 L and 0.092 g/210 L. The measured blood ethanol concentration was 0.0932 g/dL for both samples analyzed. Although the mean blood test result was slightly lower than the mean breath test result, the mean breath test result was within the estimated uncertainty of the mean blood test result. Even under the extreme conditions of the blood kit being in a refrigerator fire, the measured blood ethanol content agreed well with the paired breath ethanol test.  相似文献   

18.
Healthy men drank 0.51, 0.68, and 0.85 g of ethanol per kilogram of body weight as neat whisky in the morning after an overnight fast. During 6 to 8 h after the whisky was consumed, nearly simultaneous specimens of fingertip blood and pooled bladder urine were obtained for analysis of ethanol using an enzymatic method. The mean ratios of ethanol concentration [urine alcohol concentration (UAC)/blood alcohol concentration (BAC)] were mostly less than unity during the absorption phase. The UAC exceeded the BAC in the postpeak phase. The mean UAC/BAC ratios varied between 1.4 and 1.7 when the BAC exceeded 0.50 mg/mL. When the BAC decreased below 0.40 mg/mL, the UAC/BAC ratios increased appreciably. The mean UAC/BAC ratios of ethanol were not dependent on the person's age between the ages of 20 and 60 years old, but there were large variations within the age groups. In apprehended drinking drivers (N = 654) with a mean BAC of 1.55 mg/mL, the UAC/BAC ratio of ethanol varied widely, with a mean value of 1.49. In 12 subjects (3.2%), the ratio was less than or equal to unity. In a second specimen of urine obtained approximately 60 min after an initial void (N = 135), the mean UAC/BAC ratio was 1.35 (standard deviation = 0.17). The magnitude of the UAC/BAC ratio of ethanol can help to establish whether the BAC curve was rising or falling at or near the time of voiding. The status of alcohol absorption needs to be documented if drinking drivers claim ingestion of alcohol after the offence or when back-estimation of the BAC from the time of sampling to the time of driving is required by statute.  相似文献   

19.
This paper deals with the application of three kinds of breath-alcohol analyzer for clinical and medicolegal purposes. The limited specificity for analyzing ethanol in expired breath has given misleading information with potential serious consequences. Three different methods of alcohol analysis are reported: semiconductor sensing (Alcotest 7310), electrochemical fuel cell (Alcolmeter SM-1), and infrared (IR) absorptiometry (IR Intoximeter 3000). Methanol could not be distinguished from ethanol with any of these breath-test instruments. When nonspecific techniques of ethanol analysis are used, the results must be considered with caution when interfering substances expelled in breath cannot be excluded.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号