首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alkyl amphetamine isomers (amphetamine, 1-phenyl-2-butylamine (PBA), methamphetamine, N-methyl-PBA, N,N-dimethylamphetamine, N-ethylamphetamine, N-ethyl-PBA and N,N-diethylamphetamine) were purchased or synthesized and tested by immunoassay and GC/MS for their detectability in urine. Some cross reactivity was observed with PBA, N-methyl-PBA N-ethylamphetamine, and N-ethyl-PBA when analyzed using a series of commercial amphetamine and methamphetamine immunoassays. Chromatographic co-elution problems were observed for the underivatized isomeric group N,N-dimethylamphetamine, N-ethylamphetamine, and N-methyl-PBA under GC/MS conditions used; and their GC/MS spectra were quite similar. Of the potential derivatives, pentafluoropropionyl (PFP) anhydride and heptafluorobutyryl (HFB) anhydride provided adequate separation and easily distinguishable spectra using the electron-impact GC/MS conditions specified.  相似文献   

2.
A rapid and sensitive LC/MS method was developed for the simultaneous analysis of N,N-dimethylamphetamine (DMA), N,N-dimethylamphetamine N-oxide (DMANO), methylamphetamine (MA) and amphetamine (A) in urine samples. Employing an Alltech C18 column for solid phase extraction followed by LC/MS analysis using an Alltech Platinum EPS C18 column with a mixture of ammonium formate (0.01 M, pH 3) and acetonitrile (77:23, v/v) as mobile phase at a flow rate of 0.2 mL/min, simultaneous identification and quantitation of A, MA, DMA and DMANO in urine can be achieved using a 5-min chromatographic run. The calibration ranges were 0.10-3.0 micro g/mL for DMANO, 0.05-3.0 micro g/mL for DMA and 0.05-5.0 micro g/mL for both MA and A. The intra-, inter-day precision and accuracy for all analytes, spiked at three different concentrations in quality control samples, were in the ranges of 1.7-8.6, 4.1-10.0, -11.6 to 12.9%, respectively. The newly developed method was applied to the analysis of urine samples obtained from 118 suspected MA/DMA abusers, with the presence of MA confirmed in their urine samples under the drug-use surveillance program. Of these 118 samples, 43 were found to contain DMANO and 11 with both DMANO and DMA.  相似文献   

3.
The feasibility of detecting methamphetamine and its major metabolite, amphetamine, in postmortem tissues over a 2-year period was examined. It is important to determine if the abuse and toxic effects of drugs can be proved from evidence found in decayed, submerged, or stained tissue materials. The blood, urine, liver, skeletal muscle, skin and extremity bones from rabbits given methamphetamine intravenously were kept at room temperature, under 4 different conditions: sealed in a test tube, dried in the open air, submerged in tap water and stained on gauze. Methamphetamine was present in all the samples, with slight change in concentration in case of sealed and air dried tissues. Changes varied in bones kept in water. There were considerable decreases in methamphetamine in blood and urine stains. Despite long term storage, drug abuse and/or toxicity could be determined, in all tissues examined.  相似文献   

4.
Solid-phase microextraction (SPME) is a relatively new technique in which a small, polymer-coated fiber is employed to extract volatile and semivolatile organic compounds from the sealed headspace above a questioned sample. SPME, coupled with gas chromatography/mass spectrometry (GC/MS), was used to characterize impurities in illicit methamphetamine samples. Trace impurities present in a specimen were tentatively identified using mass-spectral databases and included 1,2-dimethyl-3-phenyl-aziridine (indicating synthesis via a halogenated ephedrine intermediate), ethyl vanillin (a flavoring compound), and caffeine (a stimulant used as cutting agent). The types and numbers of organic compounds sampled by SPME were compared with those collected by various solvent extraction protocols. In addition to unambiguously confirming the presence of methamphetamine, SPME-GC/MS analyses detected approximately 30 more organic analytes than were found by GC/MS following the ethyl acetate extraction method adopted by the United Nations International Drug Control Programme. SPME-GC/MS is a superior method for generating material "fingerprint" profiles in methamphetamine samples. The detection and characterization of increased points of comparison in drug samples provide more detailed chemical signatures for both intelligence and operational information.  相似文献   

5.
ESR method was applied to determine paraquat levels in fresh and formalin-fixed tissues. Paraquat was converted to paraquat radical by adding sodium dithionite to tissue homogenates and detected by ESR. Paraquat levels of more than 0.2 micrograms/ml homogenate could be quantified with 0.1 ml of the homogenate. The use of manganese ions for standardization of paraquat signal enabled much more accurate ESR measurements because this ion was quite stable and its signal did not overlap that of paraquat. Even with tissues fixed in formalin, tissues paraquat levels were measureable after removing formalin from the tissue extract. This fact was verified by studying two cases; the tissues were kept in formalin for 1.5 years in case 1 and for 6.5 years in case 2. In both cases, the paraquat contents in tissues were 0.02-0.08 micrograms/g. In this way ESR is one of the most suitable methods in determining low levels of paraquat in tissues even after they were preserved in formalin for a long time.  相似文献   

6.
The Ephedra plant has been identified as an excellent source of ephedrine and pseudoephedrine, both of which can be chemically reduced to form the widely abused illicit drug methamphetamine. Ephedra contains several additional alkaloids that undergo analogous reductions to form amphetamine and N,N-dimethylamphetamine (also drugs of abuse). The main alkaloids obtained from the Ephedra plant have been reduced using four common methods used by the clandestine operator. The intermediates and byproducts of these reductions have been identified and/or tentatively assigned and the mechanism of formation discussed.  相似文献   

7.
LC/MS/MS法测定生物组织中百草枯   总被引:2,自引:1,他引:1  
目的建立LC/MS/MS检测生物体液中百草枯方法。方法弱阳离子交换固相萃取小柱提取剂,应用LC/MS/MS法对生物样品中百草枯进行定性定量分析。结果经该方法测得百草枯的最小检出限为10ng/ml血(S/N≥3),线性范围为0.02~20μg/ml。结论该方法快速、灵敏、准确,适用于生物检材中百草枯的分析。  相似文献   

8.
In this paper, miniaturized achiral and chiral high-performance liquid chromatographic procedures for the determination of methamphetamine and amphetamine in human urine are described. After a simple pretreatment of human urine (i.e., 10 microL of urine or diluted urine were acidified and dried-up under N2 at room temperature) and fluorescence derivatization with 4-(4,5-diphenyl-1H-imidazol-2-yl)-benzoyl chloride under mild conditions (pH 9.0, 10 min at room temperature), the derivatives were isocratically separated on a semi-micro ODS column with Tris-HCl buffer (0.1 M, pH 7.0): acetonitrile (45 + 55 v/v) at a flow rate of 0.2 mL/min or their enantiomers were separated on a semi-micro OD-RH column with sodium hexafluorophosphate (0.3 M aq.): acetonitrile (44 + 56 v/v) at a flow rate of 0.1 mL/min as the mobile phase. Wide-ranged calibration curves were obtained with detection limits for the achiral and chiral analyses in the atto and femtomol levels, respectively, per injected volume. Satisfactory within- and between-day reproducibility data were obtained with both the methods with the highest relative standard deviation being 9.6%. The methods were applied to the determination of methamphetamine and amphetamine in human urine samples and the concentrations determined by the two methods were well correlated (r = 0.994).  相似文献   

9.
目的建立UPLC-MS/MS测定血痕中尼古丁、可替宁、甲基苯丙胺、氯胺酮、吗啡、O6-单乙酰吗啡、地西泮、三唑仑、艾司唑仑、佐匹克隆和利血平的方法。方法以甲醇为提取液,采用基质提取溶液配制标准溶液制作定量曲线。采用超高效液相色谱柱对待测样品进行分离;以电喷雾离子源正离子(ESI+)模式和多反应监测(MRM)模式进行质谱分析。优化实验条件,并进行方法学评价。结果选择UPLC HSS T3色谱柱,乙腈-5mmol/L甲酸铵+0.1%(v/v)甲酸作为流动相,甲醇作为提取溶剂。11种检测物检出限(S/N=3)和定量限(S/N=10)分别为0.04~2.82ng和0.13~7.64ng,1~500ng/mL范围内的线性关系良好。除利血平、吗啡外的检测物回收率为(53.8±5.3)%~(107.2±12.6)%。结论采用本文UPLC-MS/MS方法对血痕中11种常见烟草、毒品和药物成分进行检测,能够满足实际检案的要求,可在相关检验中选用。  相似文献   

10.
We describe a case of massive hemorrhage in the cerebral ventricles, probably caused by methamphetamine abuse. A 44-year-old male was found dead in a prone position in a hotel room. Old and new injection marks were observed in his right cubital fossa. Petechiae were observed on the conjunctiva of his right eye, laryngeal mucosa, epicardium and under the capsule of the liver (to a slight or moderate degree). The brain, weighing 1.67 kg, was heavily edematous; the lateral and fourth ventricles were filled with hematomas. Subarachnoid, intracerebral hemorrhages were not observed. Cerebral vascular abnormalities were not evident. There were no remarkable changes in other organs, other than congestion. Gas chromatographic-mass spectrometric analysis of the urine disclosed the presence of methamphetamine and amphetamine. The concentration of methamphetamine within the femoral venous blood and intraventricular hematoma was 0.347 microg/ml and 0.189 microg/g, respectively. Amphetamine was not detected in either sample. Urine contained 3.15 microg/ml methamphetamine and 0.063 microg/ml amphetamine. These results indicate that intraventricular hemorrhage might have occurred shortly after intravenous self-administration of methamphetamine. Cerebral arterial spasm and hypertension resulting from the administration of methamphetamine might have resulted in intraventricular hemorrhage.  相似文献   

11.
目的评估经非缓冲福尔马林固定不同时间后的人体组织STR分型有效性,了解各种人体组织在非缓冲福尔马林固定剂中可获得完全STR分型位点的时限。方法市售40%福尔马林溶液经1∶9稀释后在室温(15~20℃)下固定人体组织,不同时间后取样。以QIAamp DNA法和IQTMDNA System法提取DNA,用quantifiler humanTaqman探针法进行DNA定量,用常规16 STR位点的AmpFSTR identifiler kit和短小片段9 STR位点的AmpFSTR Min-iFiler kit进行PCR扩增,在3100遗传分析仪进行扩增DNA片段长度检测,用GeneMapper ID v3.2对STR位点检出率进行分析。结果福尔马林固定时间、组织类型以及DNA提取方法、PCR的DNA模板终浓度均影响非缓冲福尔马林固定后人体组织STR分型效能。DNA提取用QIAgen法为优,DNA模板终浓度的最佳范围在1~3ng/μL。各类型组织在非缓冲福尔马林固定剂中的降解速率有差异,肺组织的降解速率最慢,肝、肠组织最快。固定时间在4d内的组织可以获得常规STR的完整位点数;固定时间在15d内的组织可以获得miniSTR的完整位点数。结论非缓冲福尔马林固定人体组织时间是影响STR分型的最主要因素,其次组织类型、提取方法、DNA模板浓度及STR基因座的选择也是此类降解样品成功检测的关键因素。  相似文献   

12.
目的建立分子印迹固相萃取(MISPE)、GC/MS分析方法,用于血液中苯丙胺类毒品检测。方法 10mmol/L醋酸铵缓冲液(pH8.0)4倍稀释空白添加血液,1mL甲醇,1mL10mmol/L醋酸铵缓冲液(pH8.0)活化苯丙胺类分子印迹固相萃取柱;2×1mL去离子水、1mL60%的乙腈去离子水、1mL1%醋酸乙腈洗涤杂质;2×1mL1%甲酸/甲醇洗脱,洗脱液挥干定容,经GC/NPD、GC/MS分析检测。结果各种苯丙胺类毒品回收率均在90%以上,在20~5 000ng/mL浓度范围内线性关系良好,r2为0.995 7~0.998 9,LOQ在16~30ng/mL之间,LOD在8~15ng/mL之间。结论本方法回收率高,净化效果显著,稳定性好,杂质干扰少,可用于血液中低浓度苯丙胺类毒品的分析检测。  相似文献   

13.
A novel ring-substituted methamphetamine regioisomer, N,alpha,4-trimethyl phenmethylamine, was synthesized in order to study the validity of proposed structures for various mass spectrometry (MS)-derived peaks in a methamphetamine fragmentation pattern. While other research efforts have studied aspects of methamphetamine in detail, a full fragmentation study has not been reported previously. In addition to showing molecular structures represented by fragment peaks, mechanisms for selected processes are detailed. An empirically derived procedure to easily determine by simple spectral peak pattern recognition the geometry of dimethyl- or ethyl-substituted immonium ions (RRC = N+ RR) where m/z = 58 is outlined. These results are platform independent for electron ionization (EI) instruments, but have also proven to be helpful in explaining spectral peaks observed in spectra from ion trap systems. The spectrum for the synthesized methamphetamine regioisomer was accurately predicted using this methodology. While this approach is useful in some casework, the converse may be more useful: when an unexpected or unusual peak pattern arises in a spectrum, being able to analyze it to determine the structure of the molecule. This paper gives an analyst the means to begin such retro-synthetic analyses.  相似文献   

14.
When underivatized methamphetamine hydrochloride (MA.HCl) in methanol is subjected to the instant gas chromatographic-mass spectrometric (GC-MS) profiling with old inlet liners at temperatures above 200 degrees C, appreciable amounts of N,N-dimethylamphetamine (DMA) and amphetamine (AP) are produced. The presence of these two artifacts is attributed to the N-demethylation and N-methylation reactions of MA as well as methyl group exchange with methanol. These artifacts are only produced in old injection port liners and at elevated temperatures. The formation of artifacts is proportional to concentration of MA.HCl. It is suggested that special cautions and measures be undertaken to prevent artifacts.  相似文献   

15.
目的建立尿样和头发中甲基苯丙胺的基质辅助激光解吸飞行时间质谱(matrix-assisted laser desorption/ionization time of flight mass spectrometry,MALDI-TOF-MS)分析方法。方法尿样采用液液提取,头发经0.1mol/L盐酸水解后采用液液提取,以碳纳米管为基质应用MALDI-TOF-MS法检测。结果尿样中甲基苯丙胺的最低检测限(LOD)为0.5μg/mL,线线范围为线性范围为0.5~100μg/mL(R2=0.9970);毛发中甲基苯丙胺的最低检测限(LOD)为0.4ng/mg,线性范围为0.4~60ng/mg(R2=0.9976),对送检案例中尿样和头发检材进行检测,效果良好。结论本方法适用于尿样和头发中甲基苯丙胺的分析,与传统气相色谱质谱联用和液相色谱-质谱联用相比,分析速度更快,适合大批量样品同时分析。  相似文献   

16.
Butane is inhaled in order to achieve a pleasurable state of intoxication. An overdose can lead to death. In two deaths from our own investigation material the circumstances were suspicious for the inhalation of liquid gas, and the presence of butane should be demonstrated in the respiratory gases. For detection, a method of ion trap gas chromatography/mass spectrometry (GC/MS) and tandem-mass spectrometry (GC/MS-MS) was developed, whereby the gas samples from the lung tissue were directly injected into the GC. The GC/MS tests revealed the presence of butane. Moreover, it was found that during the MS-MS tests reaction products appeared which had formed in the ion trap. Systematic investigations of these reaction products showed that these appeared regularly and could be used as additional backup for the proof of butane. Thus phenomena in the ion trap were used which would not have been expected to occur in normal mass spectrometry or tandem-MS and had not been described in the forensic literature so far. The detected amount of butane could be quantified by means of serial dilutions with nitrogen and room air. The described method shows that small molecules or gases can be demonstrated with the ion trap mass spectrometer.  相似文献   

17.
A detailed procedure of an extremely sensitive method for quantitation of methamphetamine and amphetamine in human hair by gas chromatography (GC)/chemical ionization (CI) mass spectrometry (MS) is presented. N-methylbenzylamine was used as an internal standard. The samples, after extraction with an organic solvent, were derivatized with trifluoroacetic anhydride before the GC/MS analysis. Quantitation was made with quasi-molecular ions of the derivatives by selected ion monitoring in the CI mode. The detection limit was about 10 pg in an injected volume. The high sensitivity enabled us to measure both stimulants in a single human hair in actual cases.  相似文献   

18.
Hair of young subjects (N = 36) suspected for drug abuse was analysed for morphine, codeine, heroin, 6-acetylmorphine, cocaine, methadone, amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), and 3,4-methylenedioxyethylamphetamine (MDEA). The analysis of morphine, codeine, heroin, 6-acetylmorphine, cocaine, and methadone in hair included incubation in methanol, solid-phase extraction, derivatisation by the mixture of propionic acid anhydride and pyridine, and gas chromatography/mass spectrometry (GC/MS). For amphetamine, methamphetamine, MDA, MDMA, and MDEA analysis, hair samples were incubated in 1M sodium hydroxide, extracted with ethyl acetate, derivatised with heptafluorobutyric acid anhydride (HFBA), and assayed by GC/MS. The methods were reproducible (R.S.D. = 5.0-16.1%), accurate (85.1-100.6%), and sensitive (LoD = 0.05-0.30ng/mg). The applied methods confirmed consumption of heroin in 18 subjects based on positive 6-acetylmorphine. Among these 18 heroin consumers, methadone was found in four, MDMA in two, and cocaine in two subjects. Cocaine only was present in two, methadone only in two, methamphetamine only in two, and MDMA only in seven of the 36 subjects. In two out of nine coloured and bleached hair samples, no drug was found. Despite the small number of subjects, this study has been able to indicate the trend in drug abuse among young people in Croatia.  相似文献   

19.
目的建立安眠镇静药佐匹克隆的检测方法及其在大鼠体内动态分布模型。方法实验组大鼠用佐匹克隆橄榄油溶液(47.25mg/kg)灌胃给药,空白对照组大鼠采用橄榄油灌胃,分别于0.5、1、1.5、2.5、5、8、12h后采集心血后处死大鼠,分别取心、肝、肺、脾、肾、胃、大脑组织,采用超高效液相色谱-串联质谱法(UPLC-MS/MS)检测各组织中佐匹克隆的质量浓度。结果佐匹克隆与内标物SKF525A出峰时间分别为1.43、1.6min。各组织中佐匹克隆在5~5000ng/mL(g)线性关系良好。佐匹克隆在10、100、1000ng/mL三个浓度下日间、日内精密度良好,在各组织中平均萃取回收率高。灌胃给药后大鼠各组织中佐匹克隆含量在0.5~1h内呈上升趋势,在1h时达到峰值,在各时间点,佐匹克隆在胃壁组织中含量较其他组织高,心血和大脑组织中相对较少。结论本课题建立的UPLCMS/MS法动态检测大鼠各组织中佐匹克隆的含量具有高效性、可靠性的特点,这对今后法医学案件中涉及到佐匹克隆定性定量检验有一定的参考价值。  相似文献   

20.
目的通过给小鼠腹腔注射甲基苯丙胺(MAMP),建立小鼠急性染毒模型。方法运用GC/NPD技术,系统地进行了染毒小鼠模型各脏器及血中甲基苯丙胺(MAMP)的定性定量测定。采用1-萘胺作为内标,样品处理时采取加盐酸成盐后,又碱化,用有机溶剂萃取浓缩挥发。结果回收率高于80%。血、各脏器中最低检出限为2~5ng/ml。结论脑、肾、脾组织可以用于法庭科学分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号