首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Diagnostic Products Corporation Coat-A-Count radioimmunoassay kit for LSD in urine has been evaluated for use in forensic toxicology with a variety of sample types. The cut-offs (defined as the mean response of blank samples plus three standard deviation) for LSD in serum, haemolysed whole blood, urine and stomach contents were 0.06, 0.050-0.055, 0.18 and 0.18 ng/ml, respectively. Preliminary extraction of LSD from the samples is not usually necessary. The precision of the analysis and the recoveries from spiked samples were satisfactory. The cross-reactivities of 2-oxo-LSD, lysergic acid methyl propylamide, lysergic acid monoethylamide and nor-LSD were estimated to be 11,6,2 and 1% respectively relative to LSD (100%).  相似文献   

2.
A controlled study was undertaken to determine the stability of the designer drugs MDA, MDMA and MDEA in pooled serum, whole blood, water and urine samples over a period of 21 weeks. The concentrations of the individual designer drugs in the various matrices were monitored over time, in the dark at various temperatures (-20, 4 or 20 degrees C), for a low (+/- 6 ng/ml for water, serum and whole blood and +/- 150 ng/ml for urine) and a high concentration level (+/- 550 ng/ml for water, serum and whole blood and +/- 2500 ng/ml for urine). Compound concentrations were measured using a validated HPLC assay with fluorescence detection. Our study demonstrated no significant loss of the designer drugs in water and urine at any of the investigated temperatures for 21 weeks. The same results were observed in serum for up to 17 weeks, and up to 5 weeks in whole blood. After that time, the compounds could no longer be analyzed due to matrix degradation, especially in the low concentration samples that were stored at room temperature. This study demonstrates that the designer drugs, MDA, MDMA and MDEA are stable when stored at -20 degrees C for 21 weeks, even in haemolysed whole blood.  相似文献   

3.
An ultrasound-assisted extraction method is proposed for the determination of trace elements in hair samples by inductively coupled plasma-mass spectrometry (ICP-MS) for forensic investigation. Prior to analysis, 25 mg of hair samples were accurately weighed into (15 mL) conical tubes. Then, 2 mL of 20% HNO3 is added to the samples, sonicated at 2 min (50 W, 100% amplitude), and then further diluted to 10 mL with Milli-Q water. Resulted diluted slurries are centrifuged and the analytes are directly determined in the supernatant. Calibrations against aqueous solutions were carried out with rhodium as internal standard. The method was successfully applied for the extraction of Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Pb, Tl, U, V and Zn with a method detection limit (3 s, n = 20) of 0.1, 0.4, 0.2, 0.09, 0.08, 0.04, 0.1, 2.9, 1.0, 0.9, 0.04, 0.05, 0.1 and 4.2 ng/g, respectively. Method accuracy is traceable to Certified Reference Materials (CRMs) 85 and 86 human hair from the International Atomic Energy Agency (IAEA). Additional validation data are provided based on the analysis of hair samples from the trace elements intercomparison program operated by the Institut National de Sante’ Publique du Quebec, Canada. The proposed method is very simple and can be applied for forensic purposes with the elimination of sample digestion step prior to analysis. Then, a considerable improvement in the sample throughput is archived with the use of the proposed method.  相似文献   

4.
Several bodybuilders, all winners of international competitions, were arrested for trafficking of a number of doping agents including anabolic steroids, ephedrine, beta-adrenergics, human chorionic gonadotropin, antidepressants, and diuretics. In accordance with the recent French law against doping, the judge asked to test seven bodybuilders to identify doping practices. Hair and urine specimens were collected for analysis. After decontamination, a 100 mg hair strand was pulverized in a ball mill, hydrolyzed, extracted, and derivatized to be tested by GC/MS for anabolic steroids, beta-adrenergic compounds, ephedrine, and other doping agents. Urine was analyzed for anabolic steroids and metabolites, beta-adrenergic compounds, ephedrine, and human chorionic gonadotropin, in addition to a broad spectrum screening with GC/MS. The following compounds were detected in urine: ephedrine (29 and 36 ng/mL, n = 2), clenbuterol (0.2 to 0.3 ng/mL, n = 3), norandrosterone (4.7 to 100.7 ng/mL, n = 7), norethiocholanolone (0.9 to 161.8 ng/mL, n = 6), stanozolol (1 to 25.8 ng/mL, n = 4), methenolone (2.5 to 29.7 ng/mL, n = 4), testosterone (3 to 59.6 ng/mL, n = 7), epitestosterone (1 to 20.4 ng/mL, n = 7) and ratio testosterone/epitestosterone >6 for four subjects (18.5 to 59.6). The following drugs were detected in hair: ephedrine (0.67 and 10.70 ng/mg, n = 2), salbutamol (15 to 31 pg/mg, n = 3), clenbuterol (15 to 122 pg/mg, n = 6), nandrolone (1 to 7.5 pg/mg, n = 3), stanozolol (2 to 84 pg/mg, n = 4), methenolone (17 and 34 ng/ml, n = 2), testosterone enanthate (0.6 to 18.8 ng/mg, n = 5), and testosterone cypionate (3.3 to 4.8 ng/mg, n = 2). These results document the doping practice and demonstrate repetitive exposure to anabolic compounds and confirm the value of hair analysis as a complement to urinalysis in the control of doping practice.  相似文献   

5.
A simple and rapid method for the extraction of four diazine herbicides (terbacil, bromacil, norflurazon and PAC) from human whole blood, plasma and urine with use of Bond Elut C18 cartridges is presented. Whole blood, plasma and urine samples containing the herbicides, after mixing with distilled water, were loaded on Bond Elut C18 cartridges and the herbicides were eluted with chloroform/methanol (9:1). They were detected by capillary gas chromatography with flame ionization detection (FID) with splitless injection. Separation of the four diazine herbicides from each other and from impurities was generally satisfactory with the use of an intermediately polar DB-17 capillary column. The recovery of all compounds, which had been added to whole blood, plasma and urine, was > 89%. The calibration curve for the herbicides, which has been added to whole blood, plasma and urine, showed linearity in the range 1.6–100 ng on column. Their detection limits were 1.2–1.4 ng on column for whole blood and plasma, and 1.1–1.2 ng on column for urine.  相似文献   

6.
A solid-phase enzyme immunoassay involving microtiter plates was recently proposed by International Diagnostic Systems corporation (IDS) to screen for buprenorphine in human serum. The performance of the kit led us to investigate its applicability in other biological matrices such as urine or blood, and also hair specimens. Low concentrations of buprenorphine were detected with the ELISA test and confirmed by HPLC/MS (buprenorphine concentrations measured by HPLC/MS: 0.3 ng/mL in urine, 0.2 ng/mL in blood, and 40 pg/mg in hair). The intra-assay precision values were 8.7% at 1 ng/mL of urine (n = 8), 11.5% at 2 ng/mL in serum (n = 8), and 11.5% at 250 pg/mg of hair (n = 8), respectively. The immunoassay had no cross-reactivity with dihydrocodeine, ethylmorphine, 6-monoacetylmorphine, pholcodine, propoxyphene, dextromoramide, dextrometorphan at 1 and 10 mg/L, or codeine, morphine, methadone, and its metabolite EDDP. A 1% cross-reactivity was measured for a norbuprenorphine concentration of 50 ng/mL. Finally, the immunoassay was validated by comparing authentic specimens results with those of a validated HPLC/MS method. From the 136 urine samples tested, 93 were positive (68.4%) after the ELISA screening test (cutoff: 0.5 ng/mL) and confirmed by HPLC/MS (buprenorphine concentrations: 0.3-2036 ng/mL). From the 108 blood or serum samples screened, 27 were positive (25%) after the ELISA test with a cutoff value of 0.5 ng/mL (buprenorphine concentrations: 0.2-13.3 ng/mL). Eighteen hair specimens were positive (72%) after the screening (cutoff: 10 pg/mg) and confirmed by LC/MS (buprenorphine concentrations: 40-360 pg/mg). The ELISA method produced false positive results in less than 21% of the cases, but no false negative results were observed with the immunological test. Four potential adulterants (hypochloride 50 mL/L, sodium nitrite 50 g/L, liquid soap 50 mL/L, and sodium chloride 50 g/L) that were added to 10 positive urine specimens (buprenorphine concentrations in the range 5.3-15.6 ng/mL), did not cause a false negative response by the immunoassay.  相似文献   

7.
11-Nor-Delta(9)-carboxy tetrahydrocannabinol glucuronide (THCCOOglu) is a major metabolite of tetrahydrocannabinol in blood. Despite its mass spectrometric identification already in 1980, further physicochemical data of THCCOOglu have not been established. Therefore, the octanol/buffer partition coefficient P and the blood to plasma ratio b/p for THCCOOglu concentrations of 100 and 500ng/ml were investigated. Protein binding of the glucuronide was established from spiked albumin solutions at a level of 250ng/ml as well as from authentic samples. The data were compared to those of 11-nor-Delta(9)-carboxy tetrahydrocannabinol (THCCOOH). In addition, the short-term stability of THCCOOglu in plasma at different storage temperatures was studied. Analysis was performed by LC/MS/MS. The glucuronide partition coefficient P (mean: 17.4 and 18.0 for 100 and 500ng/ml, respectively) was unexpectedly lipophilic at pH 7.4. Its blood to plasma ratios averaged 0.62 and 0.68 at 100 and 500ng/ml, respectively. THCCOOglu was highly reversibly bound to albumin (mean: 97%), and the mean fraction bound did not differ from that determined from authentic samples. THCCOOglu degraded even at a storage temperature of 4 degrees C and THCCOOH was identified as a major decomposition product.  相似文献   

8.
Shen M  Liu XQ  Liu W  Xiang P  Shen B 《法医学杂志》2006,22(1):48-51
目的探索毛发中外源性GHB的检测及判断的可行性,为涉GHB的鉴定提供方法和依据。方法建立毛发中GHB的GC/MS分析方法,并通过动物实验,考察毛发中内源性GHB的质量分数范围、外源性GHB在毛发中的时间过程以及给药剂量、毛发颜色与毛发中GHB的质量分数关系。结果豚鼠和中国人黑色毛发中内源性GHB质量分数分别为(3.01±1.41)ng/mg(n=28)和(1.02±0.27)ng/mg(n=20);摄GHB后毛发中GHB质量分数明显增加且与给药剂量呈正相关性;GHB在毛干中呈窄带分布;深色毛发中GHB质量分数高于浅色毛发。结论毛发中GHB的检测适用于GHB滥用和中毒的法医毒物学鉴定;根据毛发中的GHB质量分数和毛发分段分析可判断GHB的来源。  相似文献   

9.
In a double-blind placebo controlled study on psychomotor skills important for car driving (Study 1), a 75 mg dose of +/- 3,4-methylenedioxymethamphetamine (MDMA) was administered orally to 12 healthy volunteers who were known to be recreational MDMA-users. Toxicokinetic data were gathered by analysis of blood, urine, oral fluid and sweat wipes collected during the first 5h after administration. Resultant plasma concentrations varied from 21 to 295 ng/ml, with an average peak concentration of 178 ng/ml observed between 2 and 4h after administration. MDA concentrations never exceeded 20 ng/ml. Corresponding MDMA concentrations in oral fluid, as measured with a specific LC-MS/MS method (which required only 50 microl of oral fluid), generally exceeded those in plasma and peaked at an average concentration of 1215 ng/ml. A substantial intra- and inter-subject variability was observed with this matrix, and values ranged from 50 to 6982 ng/ml MDMA. Somewhat surprisingly, even 4-5h after ingestion, the MDMA levels in sweat only averaged 25 ng/wipe. In addition to this controlled study, data were collected from 19 MDMA-users who participated in a driving simulator study (Study 2), comparing sober non-drug conditions with MDMA-only and multiple drug use conditions. In this particular study, urine samples were used for general drug screening and oral fluid was collected as an alternative to blood sampling. Analysis of oral fluid samples by LC-MS/MS revealed an average MDMA/MDEA concentration of 1121 ng/ml in the MDMA-only condition, with large inter-subject variability. This was also the case in the multiple drug condition, where generally, significantly higher concentrations of MDMA, MDEA and/or amphetamine were detected in the oral fluid samples. Urine screening revealed the presence of combinations such as MDMA, MDEA, amph, cannabis, cocaine, LSD and psilocine in the multiple-drug condition.  相似文献   

10.
A rapid and sensitive method using LC-MS/MS triple stage quadrupole for the determination of traces of amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"), 3,4-methylenedioxyethamphetamine (MDEA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in hair, blood and urine has been developed and validated. Chromatography was carried out on an Uptisphere ODB C(18) 5 microm, 2.1 mm x 150 mm column (Interchim, France) with a gradient of acetonitrile and formate 2 mM pH 3.0 buffer. Urine and blood were extracted with Toxitube A (Varian, France). Segmented scalp hair was treated by incubation 15 min at 80 degrees C in NaOH 1M before liquid-liquid extraction with hexane/ethyl acetate (2/1, v/v). The limits of quantification (LOQ) in blood and urine were at 0.1 ng/mL for all analytes. In hair, LOQ was <5 pg/mg for MA, MDMA, MDEA and MBDB, at 14.7 pg/mg for AP and 15.7 pg/mg for MDA. Calibration curves were linear in the range 0.1-50 ng/mL in blood and urine; in the range 5-500 pg/mg for MA, MDMA, MDEA and MBDB, and 20-500 pg/mg for AP and MDA. Inter-day precisions were <13% for all analytes in all matrices. Accuracy was <20% in blood and urine at 1 and 50 ng/mL and <10% in hair at 20 and 250 pg/mg. This method was applied to the determination of MDMA in a forensic case of single administration of ecstasy to a 16-year-old female without her knowledge during a party. She suffered from hyperactivity, sweating and agitation. A first sample of urine was collected a few hours after (T+12h) and tested positive to amphetamines by immunoassay by a clinical laboratory. Blood and urine were sampled for forensic purposes at day 8 (D+8) and scalp hair at day 60 (D+60). No MDMA was detected in blood, but urine and hair were tested positive, respectively at 0.42 ng/mL and at 22 pg/mg in hair only in the segment corresponding to the period of the offence, while no MDA was detectable. This method allows the detection of MDMA up to 8 days in urine after single intake.  相似文献   

11.
The aim of the present study was to establish an analytical method for the determination of clozapine in sweat and to determine whether the clozapine level in hair and sweat were correlated to the daily dose of clozapine delivered to patients. Twenty-six subjects treated with clozapine at 200-700 mg/day for refractory psychosis were included in the study. Clozapine was determined in plasma by liquid chromatography coupled to a diode array detection system, after extraction with an organic solvent at pH 9.5. Clozapine was extracted from hair and sweat patches specimens by incubation in methanol overnight at 40 degrees C. The residues were analyzed by gas chromatography coupled to mass spectrometry in the electronic impact mode of detection. It was possible to determine clozapine in concentrations ranging from 30 to 1016 ng/ml in plasma (n = 22), from 0.17 to 34.24 ng/mg in hair (n = 23) and from 49 to 5609 ng/patch in sweat (n = 20). Preliminary results suggest a lack of correlation between daily regimen of clozapine and plasma levels of the drug. Therefore, a better dose-concentration relationship was observed in our study between daily dose and hair concentration (r = 0.542, P < 7%) or between daily dose and sweat concentration (r = 0.589, P < 6%), but with wide variations for patients at the same posology. However, the idea of using quantitative drug measurements in hair or sweat to ascertain whether a patient has taken his treatment exactly as prescribed will remain inapplicable.  相似文献   

12.
尿液、血液中γ-羟丁酸的气质联用法分析   总被引:3,自引:0,他引:3  
目的为尿液、血液中γ-羟丁酸(gamma-hydroxybutyricacid,GHB),γ-羟丁酸内酯(gamma-butyrolactone,GBL)和1,4-丁二醇(1,4-butanediol,1,4-BD)的鉴定提供方法和依据。方法100μl尿液或血液以GHBd6为内标,经乙酸乙酯提取、BSTFA衍生化后,用GC/MS法分析。结果测尿液中内源性GHB的线性范围是20-800ng/ml,R2=0.9995,最低检出限为10ng/ml(S/N≥3);测尿液、血液中外源性GHB的线性范围为5-60μg/ml,R2分别为0.9999和0.9928。相对回收率为99%-104%。以所建方法测定了健康志愿者尿液中内源性GHB含量,并考察了健康受试者外源性GHB的代谢情况。结论所建方法准确、便捷、省时、选择性好,适用于法医毒物学鉴定。  相似文献   

13.
Blood, brain, and hair GHB concentrations following fatal ingestion   总被引:1,自引:0,他引:1  
Despite the increasing incidence of illicit use of gamma-hydroxybutyrate (GHB), little information is available documenting levels of the drug in GHB fatalities. We measured GHB levels in postmortem blood, brain and hair specimens from a suspected overdose case by gas chromatography/mass spectrometry (GC/MS) following solid phase extraction (SPE) and derivatization with bis(trimethyl-silyl) trifluoroacetamide (BSTFA). Examination found 330 microg/mL GHB in femoral blood and 221 ng/mg GHB in frontal cortex brain tissue, values higher than those typically reported in the literature. The hair shaft was negative for GHB whereas the plucked root bulbs with outer root sheath attached (2,221 ng/mg) and root bulbs after washing and removal of the outer root sheath (47 ng/mg) contained the drug. Our results are consistent with an acute single dose of GHB and, as the toxicology screen was negative for other drugs of abuse, emphasize the significant danger of this drug.  相似文献   

14.
多虑平SPE-HPLC分析方法的建立及其应用   总被引:2,自引:0,他引:2  
目的 建立尿样和全血中多虑平的固相萃取 高效液相色谱 (SPE HPLC)分析方法。方法 以多沙普仑为内标 ,1ml尿样或 0 5ml全血用Oasis小柱固相萃取后进Lichrospher 10 0RP 18e ( 2 5 0mm× 4mm ,5 μm)分析柱进行分析 ,2 3 0、 2 5 0nm同时进行检测。结果 尿样和全血中的检测限均 2ng/ml,线性相关系数r≥ 0 9992 ,天内和天间精密度均小于 6 75 % ,绝对回收率大于 85 % ,内源性物质不干扰测定。结论 本法快速、简便、准确 ,可用于实际案例的检测。  相似文献   

15.
In this study, we investigated the patterns of cannabis users (n=412) according to their sex, age, and the results of urinalysis and hair analysis, and classified the concentrations of THCCOOH in hair into three categories to examine the levels of cannabis use. We also compared the concentrations of THCCOOH in hair root, hair without the hair root and whole hair and examined the relationship among them according to the results of urinalysis. The hair samples were washed, digested with 1ml of 1M NaOH at 85°C for 30min and extracted with 2ml of n-hexane:ethyl acetate (9:1) two times after adding 1ml of 0.1N sodium acetate buffer (pH 4.5) and 200μl of acetic acid. The final mixture was derivatized with 50μl of PFPA and 25μl of PFPOH for 30min at 70°C. The solution was evaporated, and the residue was reconstituted in 40μl of ethyl acetate and transferred to an autosampler vial. One microlitre was injected into the GC/MS/MS-NCI system. The concentrations of THCCOOH ranged from 0.06 to 33.44pg/mg (mean 2.96; median 1.32) in hair from cannabis users who had positive urine results and ranged from 0.05 to 7.24pg/mg (mean 1.35; median 0.37) in hair from cannabis users who had negative urine results. The average concentration of THCCOOH in hair from cannabis users who had positive urine results was higher than that from cannabis users who had negative urine results. Male cannabis users in their forties were predominant. We classified the concentrations of THCCOOH in hair into three groups (low, medium and high), and could use the grouping of THCCOOH in hair as a guide for determining the level of use. The low, medium and high concentration ranges for THCCOOH in hair were 0.05-0.24, 0.25-2.60 and 2.63-33.44pg/mg, respectively. We also investigated 28 hair samples with the root. The highest concentrations of THCCOOH were seen in the hair root from 18 out of the 28 hair samples. The average concentrations of THCCOOH in hair root, hair without hair root and whole hair from cannabis users who had positive urine results were higher than those who had negative urine results.  相似文献   

16.
GHB can be produced either as a pre- or postmortem artifact. The authors describe two cases in which GHB was detected and discuss the problem of determining the role of GHB in each case. In both cases, NaF-preserved blood and urine were analyzed using gas chromatography. The first decedent, a known methamphetamine abuser, had GHB concentrations similar to those observed with subanesthetic doses (femoral blood, 159 microg/ml; urine, 1100 microg/ml). Myocardial fibrosis, in the pattern associated with stimulant abuse, was also evident. The second decedent had a normal heart but higher concentrations of GHB (femoral blood, 1.4 mg/ml; right heart, 1.1 mg/ml; urine, 6.0 mg/ml). Blood cocaine and MDMA levels were 420 and 730 ng/ml, respectively. Both decedents had been drinking and were in a postabsorptive state, with blood to vitreous ratios of less than 0.90. If NaF is not used as a preservative, GHB is produced as an artifact. Therefore, the mere demonstration of GHB does not prove causality or even necessarily that GHB was ingested. Blood and urine GHB concentrations in case 1 can be produced by a therapeutic dose of 100 mg, and myocardial fibrosis may have had more to do with the cause of death than GHB. The history in case 2 is consistent with the substantial GHB ingestion, but other drugs, including ethanol, were also detected. Ethanol interferes with GHB metabolism, preventing GHB breakdown, raising blood concentrations, and making respiratory arrest more likely. Combined investigational, autopsy, and toxicology data suggest that GHB was the cause of death in case 2 but not case 1. Given the recent discovery that postmortem GHB production occurs even in stored antemortem blood samples (provided they were preserved with citrate) and the earlier observations that de novo GHB production in urine does not occur, it is unwise to draw any inferences about causality unless (1) blood and urine are both analyzed and found to be elevated; (2) blood is collected in NaF-containing tubes; and (3) a detailed case history is obtained.  相似文献   

17.
A 43-year-old man was found dead in a hotel room during a sexual relation with a colleague.He was treated both for cardiovascular disease and for erectile dysfunction with VIAGRA. A pillbox was found in the room with several tablets of verapamil (Isoptine), trimetazidine (Vastarel), yohimbine and bromazepam (Lexomil). A box of VIAGRA 25mg was found in his raincoat and two tablets were missing. His wife declared during the investigation that he was also treated by trinitrine. Autopsy revealed severe coronary artery sclerosis as well as signs of previous myocardial infarctions. Blood, urine, bile, gastric content and hair and representative tissues for histology were collected for toxicological analysis.Sildenafil and yohimbine were screened with liquid chromatography/mass spectrometry (LC/MS) and trinitrine with headspace injection (HS)/GC/MS. Verapamil and trimetazidine were identified and quantified with LC/diode array detection (DAD).Sildenafil was identified in blood, urine, bile and gastric content at 105, 246, 1206 and 754ng/ml, respectively. Hair concentration was 177pg/mg. The desmethyl metabolite was quantified in urine at 143ng/ml. Blood concentrations of verapamil and trimetazidine were measured at 659 and 2133ng/ml, respectively and were above therapeutic ranges. Trinitrine and yohimbine were not identified.These results confirm the absorption of sildenafil, verapamil and trimetazidine before the death and hair analysis indicates the chronic use of sildenafil.To the author's knowledge, this is the first report of a fatal sildenafil-verapamil association, probably by hypotension and cardiac dysrhythmia.  相似文献   

18.
A rapid and sensitive method using LC-MS/MS triple stage quadrupole for the determination of traces of amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”), 3,4-methylenedioxyethamphetamine (MDEA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) in hair, blood and urine has been developed and validated. Chromatography was carried out on an Uptisphere ODB C18 5 μm, 2.1 mm × 150 mm column (Interchim, France) with a gradient of acetonitrile and formate 2 mM pH 3.0 buffer. Urine and blood were extracted with Toxitube A® (Varian, France). Segmented scalp hair was treated by incubation 15 min at 80 °C in NaOH 1 M before liquid–liquid extraction with hexane/ethyl acetate (2/1, v/v). The limits of quantification (LOQ) in blood and urine were at 0.1 ng/mL for all analytes. In hair, LOQ was <5 pg/mg for MA, MDMA, MDEA and MBDB, at 14.7 pg/mg for AP and 15.7 pg/mg for MDA. Calibration curves were linear in the range 0.1–50 ng/mL in blood and urine; in the range 5–500 pg/mg for MA, MDMA, MDEA and MBDB, and 20–500 pg/mg for AP and MDA. Inter-day precisions were <13% for all analytes in all matrices. Accuracy was <20% in blood and urine at 1 and 50 ng/mL and <10% in hair at 20 and 250 pg/mg. This method was applied to the determination of MDMA in a forensic case of single administration of ecstasy to a 16-year-old female without her knowledge during a party. She suffered from hyperactivity, sweating and agitation. A first sample of urine was collected a few hours after (T + 12 h) and tested positive to amphetamines by immunoassay by a clinical laboratory. Blood and urine were sampled for forensic purposes at day 8 (D + 8) and scalp hair at day 60 (D + 60). No MDMA was detected in blood, but urine and hair were tested positive, respectively at 0.42 ng/mL and at 22 pg/mg in hair only in the segment corresponding to the period of the offence, while no MDA was detectable. This method allows the detection of MDMA up to 8 days in urine after single intake.  相似文献   

19.
This study examined cocaine and benzoylecgonine concentrations in 100 consecutive deaths where either compound was identified in blood or urine specimens to determine whether any relationship between these concentrations and cause of death can be found. Forty-seven of the 100 cases were deaths attributed to cocaine, narcotic or combined cocaine and narcotic intoxication. There were 13 cases of cocaine intoxication where no psychoactive substance other than ethanol was detected. The mean cocaine concentration in these deaths was 908 ng/ml; three cases had cocaine concentrations greater than 2000 ng/ml, while the other ten cases had cocaine concentrations less than or equal to 700 ng/ml. The mean cocaine concentration in non-cocaine deaths where no psychoactive substance other than ethanol was detected was 146 ng/ml. This difference was not statistically significant. However, the average blood benzoylecgonine concentration in the 13 cocaine deaths was significantly higher than in the 19 non-cocaine deaths. A review of combined cocaine and narcotic deaths suggest that the narcotic is the main causative agent in these deaths.  相似文献   

20.
本文介绍了一种应用Sep—Pak C_(18)固相萃取柱从各类生物检材中快速提取净化9种氨基甲酸酯类农药的方法,并用大口径毛细管气相色谱进行分析。9种药物包括:速灭威、叶蝉散、灭多虫、灭除威、灭杀威、残杀威、巴沙、呋喃丹、西维因。萃取前,水基质检材用蒸馏水稀释;脏器检材加0.4N高氯酸溶液。用3ml氯仿/异丙醇(9:1)洗脱药物。水基质检材的回收率(尿、血浆、全血)在80—100%之间;脏器检材的回收率(肝、肾、脑)在66—100%之间。Sep—Pak C_(18)小柱用于尿和血浆样品时可反复使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号