首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, poppy seeds were examined for a natural constituent that might serve as a maker for the seeds' ingestion as opposed to opiate abuse. Thebaine was selected as possible marker, since it was found to be a component of all poppy seeds examined and was not a natural component of different heroin samples. During the course of this investigation, a new extraction and cleanup procedure was developed for the gas chromatographic/nitrogen phosphorus detection (GC/NPD) and gas chromatographic/mass spectrometric (GC/MS) analysis of morphine and codeine in urine. A linear response, over a concentration range of 25 to 600 ng/mL, was obtained for codeine and morphine (r = 0.9982 and 0.9947, respectively). The minimum detectable level (LOD) and limit of quantitation (LOQ) for morphine were 10 and 30 ng/mL, respectively; whereas LOD and LOQ for codeine were 2 and 8 ng/mL, respectively. The coefficients of variance (CV, n = 6) for morphine and codeine analyses at the 100-ng/mL level were 13.3 and 4.6%, respectively. This procedure was used for the analysis of urine samples from five poppy seed eaters who each ingested 200 g of poppy seed cake. Results indicated that significant amounts of morphine and codeine are excreted in urine and that in all subjects, at least at one point in time, the apparent morphine concentration as determined by radioimmunoassay (RIA) analysis exceeded the cutoff value (300 ng/mL) established for screening. Thebaine was not detected in urine specimens collected following poppy seeds ingestion and thus could not be used as a marker.  相似文献   

2.
Numerous articles have been published regarding the positive morphine and codeine urinalysis results from the ingestion of poppy seeds. Oregon's perspective towards ingestion of controlled substances focuses around driving under impaired conditions. To determine the influence of the residual opium on poppy seeds to impairment, seven volunteers each ingested 25 grams of poppy seeds baked into bundt cakes. Urine samples were screened by EMIT using 300 ng/ml cutoff levels. All of the urine specimens were found to be opiate positive shortly after consuming the cake; however, after administering a series of standardized drug recognition evaluation tests, no subjects were found to exhibit symptoms of opiate impairment.  相似文献   

3.
The universally accepted 300 ng/ml cut-off limit for opiate assays stated to be mandatory for all drug screening laboratories by the Substance Abuse and Mental Health Services Administration, has been questioned recently due to positive results being obtained following the ingestion of poppy seed containing food products. To establish the plausibility of the `the poppy seed defence' the concentrations of codeine, norcodeine, morphine, normorphine and thebaine (a potential marker for seed ingestion) in several varieties of poppy seeds from different countries were quantified by GC–MS. The country of origin of the seed specimen analysed and the preparation of the seeds prior to their culinary use was found to influence the alkaloid concentration determined. The maximum morphine and codeine concentrations determined in the seeds were found to be 33.2 and 13.7 μg/g seed respectively. In addition, thebaine concentrations were found to vary with each seed sample analysed. Following the consumption of bread rolls (mean 0.76 g seed covering per roll) by four subjects, all urine specimens analysed produced negative results (using the Dade Bebring EMIT II opiate screening assay) with the exception of one subject (body weight 63.0 kg) who consumed two poppy seed rolls. In this subject opiate positive screening results were obtained for up to 6 h post ingestion with maximum urinary morphine and codeine concentrations of 832.0 ng/ml (@ 2–4 h post ingestion) and 47.9 ng/ml (@ 0–2 h post ingestion) respectively being achieved. Following the ingestion of poppy seed cake containing an average of 4.69 g of seed per slice by four individuals, opiate positive screening results were obtained for up to 24 h. In one subject (dose equivalent to 0.07 g poppy seed/kg body weight) maximum urinary morphine and codeine concentrations of 302.1 ng/ml (@ 0–2 h) and 83.8 ng/ml (@ 2–4 h) respectively were recorded. The elimination of thebaine was found to vary widely between individuals, therefore suggesting that its absence from a specimen is not necessarily indicative of opiate abuse. These findings demonstrate that the poppy seed defence could be used as an argument in medico-legal and employment medical cases. Great care should therefore be taken when interpreting the data produced when screening for opiates.  相似文献   

4.
5.
Concentrations of unconjugated morphine, codeine and 6-acetylmorphine (6-AM), the specific metabolite of heroin, were determined in urine specimens from 339 individuals apprehended for driving under the influence of drugs (DUID) in Sweden. After an initial screening analysis by immunoassay for 5-classes of abused drugs (opiates, cannabinoids, amphetamine analogs, cocaine metabolite and benzodiazepines), all positive specimens were verified by more specific methods. Opiates and other illicit drugs were analyzed by isotope-dilution gas chromatography-mass spectrometry (GC-MS). The limits of quantitation for morphine, codeine and 6-AM in urine were 20 ng/mL. Calibration plots included an upper concentration limit of 1000 ng/mL for each opiate. We identified the heroin metabolite 6-AM in 212 urine specimens (62%) at concentrations ranging from 20 ng/mL to > 1000 ng/mL. The concentration of 6-AM exceeded 1000 ng/mL in 79 cases (37%) and 31 cases (15%) were between 20 and 99 ng/mL. When 6-AM was present in urine the concentration of morphine was above 1000 ng/mL in 196 cases (92%). The concentrations of codeine in these same urine specimens were more evenly distributed with 35% being above 1000 ng/mL and 21% below 100 ng/mL. These results give a clear picture of the concentrations of unconjugated morphine, codeine and 6-acetylmorphine that can be expected in opiate-positive urine specimens from individuals apprehended for DUID after taking heroin.  相似文献   

6.
A previous study suggested that small amounts of morphine are metabolically converted to hydromorphone. In the present study, morphine positive urine specimens obtained from a postmortem laboratory and a random urinalysis program were tested for morphine, codeine, hydromorphone, hydrocodone, oxymorphone, and oxycodone to assess the possibility that small amounts of hydromorphone are produced from the metabolism of morphine. The opioids were analyzed by gas chromatography-mass spectrometry as their respective trimethylsilyl derivatives following solid phase extraction. The limit of detection for hydromorphone was 5 ng/mL. A total of 73 morphine positive urine specimens were analyzed, with morphine concentrations ranging from 131 to 297,000 ng/mL. Hydromorphone was present at a concentration > or =5 ng/mL in 36 of these specimens at concentrations ranging from 0.02% to 12% of the morphine concentration. Hydrocodone was not detected in these specimens at the assay detection limit of 25 ng/mL. These results support earlier work suggesting that the detection of hydromorphone in urine specimens does not necessarily mean that exogenous hydromorphone or hydrocodone was used.  相似文献   

7.
Urine morphine levels after the consumption of poppy seeds were measured in two separate trials. Maximum levels of approximately 18 micrograms/ml were found using RIA, EMIT-ST and GC methodologies. Positive immunoassay results were seen up to 60 h post-ingestion. Several different lots of seeds from various sources were assayed for morphine and found to range from 4-200 mg/kg. Differentiation of poppy seed eaters from opiate users was not possible via the identification of minor alkaloid constituents of poppy seeds. It is, however, possible to analyse opiate urines with respect to 6-O-acetylmorphine. Below the level of approximately 5 micrograms/ml total opiates, GC/MS is the method of choice for this analysis.  相似文献   

8.
Poppy seeds contain morphine in different amounts. Reported concentrations are up to 294 mg morphine/kg poppy seeds. Since penalties based on Street Traffic Law (parapgraph 24a StVG) in Germany (administrative offence) require definitive proof of morphine in blood samples, and the "Grenzwertkommission" in consultation with the Ministry of Transportation recommended a threshold of free morphine of 10 ng/mL, the question arose whether the consumption of poppy seeds can lead to a blood concentrations equal or higher than 10 ng/mL of free morphine. Therefore, five volunteers ate poppy seed products (50 mg morphine/kg poppy seeds). In urine, all on-site tests were enzyme immunologically positive for opiates and were positive to morphine by GC/MS. All the blood samples were negative to morphine by EIA and to free morphine by GC/MS. However, after hydrolysis, morphine was detected by GC/MS in all cases. Accordingly, in Germany, penalties based on parapgraph 24a StVG are not likely to cause road users any concerns should they have consumed poppy seeds. Driver Licensing Authorities, however, should be advised of this problem to avoid unjustified legal measures.  相似文献   

9.
Identification of 6-acetylmorphine, a specific metabolite of heroin, is considered to be definitive evidence of heroin use. Although 6-acetylmorphine has been identified in oral fluid following controlled heroin administration, no prevalence data is available for oral fluid specimens collected in the workplace. We evaluated the prevalence of positive test results for 6-acetylmorphine in 77,218 oral fluid specimens collected over a 10-month period (January-October 2001) from private workplace testing programs. Specimens were analyzed by Intercept immunoassay (cutoff concentration=30 ng/ml) and confirmed by GC-MS-MS (cutoff concentrations=30 ng/ml for morphine and codeine, and 3 ng/ml for 6-acetylmorphine). Only morphine-positive oral fluid specimens were tested by GC-MS-MS for 6-acetylmorphine. A total of 48 confirmed positive morphine results were identified. An additional 107 specimens were confirmed for codeine only. Of the 48 morphine-positive specimens, 32 (66.7%) specimens were positive for 6-acetylmorphine. Mean concentrations (+/-S.E.M.) of morphine, 6-acetylmorphine and codeine in the 32 specimens were 755+/-201, 416+/-168 and 196+/-36 ng/ml, respectively. Concentrations of 6-acetylmorphine in oral fluid ranged from 3 to 4095 ng/ml. The mean ratio (+/-S.E.M.) of 6-acetylmorphine/morphine was 0.33+/-0.06. It is suggested that, based on controlled dose studies of heroin administration, ratios >1 of 6-acetylmorphine/morphine in oral fluid are consistent with heroin use within the last hour before specimen collection. The confirmation of 6-acetylmorphine in 66.7% of morphine-positive oral fluid specimens indicates that oral fluid testing for opioids may offer advantages over urine in workplace drug testing programs and in testing drugged drivers for recent heroin use.  相似文献   

10.
The presence of the heroin metabolite 6-monoacetylmorphine (6-MAM) in urine is used to definitively identify recent heroin abuse. A rapid and sensitive GC-MS method for the simultaneous analysis of codeine, norcodeine, morphine, normorphine and 6-MAM in urine was developed and successfully applied to the analysis of 321 'heroin-positive' urine specimens from individual subjects (identified by the presence of 6-MAM), to provide quantitative urinary opiate excretion data for heroin abusers.The cohort analysed was composed of 238 males (age range 16-53 years) and 83 females (age range 16-50 years). The concentrations of free 6-MAM, morphine and codeine determined in these 321 specimens ranged between 103-246,312, 129-193,600 and 103-519,000 microg/l, respectively. Free norcodeine and normorphine concentrations were found to range between 143-50,200 and 205-149,700 microg/l, respectively. A statistically significant relationship was determined between the subject age and the 6-MAM concentration, possibly indicating opiate tolerance in these individuals.  相似文献   

11.
Papaveris pericarpium, a natural source of morphine and codeine, is the principal active component in many antitussive traditional Chinese medicines. We herein report the first PK study of papaveris pericarpium in human plasma and urine following oral administration of single (15, 30, 60 mL) and multiple dose (15 mL) of Qiangli Pipa Syrup (MOR 0.1 mg/mL, COD 0.028 mg/mL) by monitoring morphine and codeine using a HPLC‐MS/MS method. Their Tmax and t1/2 values are independent of dosages, while the AUC0?t linearly increased with higher dosages, indicating linear PK characteristics. AUC0?t increased obviously after multiple doses, indicating possible risk of accumulative toxicity. Urine studies suggested risks of positive opiate drug tests with a cutoff of 300 ng/mL, which lasted 6–14 h at different doses. These results provide important information for clinical safety, efficacy and rational drug use of Qiangli Pipa Syrup and also guide the related judicial expertise of its administration.  相似文献   

12.
Recently, medical examiners reported two cases of a 21‐year‐old male and 24‐year‐old male with high amounts of morphine in their blood at autopsy. It was suspected that the decedents ingested lethal amounts of morphine from home‐brewed poppy seed tea. No studies to date have investigated opium alkaloid content extracted from poppy seeds by home‐brewing methods. Various poppy seed products were purchased from online sources and extracted with four home‐brewing methods representative of recipes found on drug user forums. Morphine, codeine, and thebaine were quantified in the tea extracts by liquid chromatography‐tandem mass spectrometry using a validated analytical method. Morphine, codeine, and thebaine concentrations from seeds were <1–2788 mg/kg, <1–247.6 mg/kg, and <1–124 mg/kg, respectively. Alkaloid yield varied between extractions, but regardless of extraction conditions, lethal amounts of morphine can be rinsed from poppy seed coats by home‐brewing methods.  相似文献   

13.
Data was compiled from 126 morphine-involved cases investigated by the Office of the Chief Medical Examiner, State of Maryland, USA. An investigation was conducted into whether comparison of morphine concentrations from a central and peripheral site could be used to determine whether a morphine death was acute or delayed. Fifty cases were identified as 'acute' because the urine free morphine concentration by radioimmunoassay (RIA) was less than 25 ng/mL; 76 cases were classified as 'random' because they had a urine morphine concentration greater than 25 ng/mL by RIA. The average heart blood to peripheral blood morphine concentration ratio in the acute deaths was 1.40. The average heart blood to peripheral blood morphine concentration ratio in the random deaths was 1.18. Because there was considerable overlap between the two groups of data, the authors conclude that it was not possible to predict 'acute' opiate intoxication deaths versus 'delayed' deaths when the only information available is heart and peripheral blood free morphine concentrations.  相似文献   

14.
A solid-phase enzyme immunoassay involving microtiter plates was recently proposed by International Diagnostic Systems corporation (IDS) to screen for buprenorphine in human serum. The performance of the kit led us to investigate its applicability in other biological matrices such as urine or blood, and also hair specimens. Low concentrations of buprenorphine were detected with the ELISA test and confirmed by HPLC/MS (buprenorphine concentrations measured by HPLC/MS: 0.3 ng/mL in urine, 0.2 ng/mL in blood, and 40 pg/mg in hair). The intra-assay precision values were 8.7% at 1 ng/mL of urine (n = 8), 11.5% at 2 ng/mL in serum (n = 8), and 11.5% at 250 pg/mg of hair (n = 8), respectively. The immunoassay had no cross-reactivity with dihydrocodeine, ethylmorphine, 6-monoacetylmorphine, pholcodine, propoxyphene, dextromoramide, dextrometorphan at 1 and 10 mg/L, or codeine, morphine, methadone, and its metabolite EDDP. A 1% cross-reactivity was measured for a norbuprenorphine concentration of 50 ng/mL. Finally, the immunoassay was validated by comparing authentic specimens results with those of a validated HPLC/MS method. From the 136 urine samples tested, 93 were positive (68.4%) after the ELISA screening test (cutoff: 0.5 ng/mL) and confirmed by HPLC/MS (buprenorphine concentrations: 0.3-2036 ng/mL). From the 108 blood or serum samples screened, 27 were positive (25%) after the ELISA test with a cutoff value of 0.5 ng/mL (buprenorphine concentrations: 0.2-13.3 ng/mL). Eighteen hair specimens were positive (72%) after the screening (cutoff: 10 pg/mg) and confirmed by LC/MS (buprenorphine concentrations: 40-360 pg/mg). The ELISA method produced false positive results in less than 21% of the cases, but no false negative results were observed with the immunological test. Four potential adulterants (hypochloride 50 mL/L, sodium nitrite 50 g/L, liquid soap 50 mL/L, and sodium chloride 50 g/L) that were added to 10 positive urine specimens (buprenorphine concentrations in the range 5.3-15.6 ng/mL), did not cause a false negative response by the immunoassay.  相似文献   

15.
Reticuline (a precursor of opium alkaloids) was detected and characterised as its trimethylsilyl ethers, acetyl esters and methyl ethers by GC-EIMS and GC-CIMS in opium and the urine of opium users after hydrolysis by acid or beta-glucuronidase as coextractive of morphine. Because this compound cannot be detected in heroin and poppy seeds, it is suggested as a differentiating marker between opium and heroin use, opium and poppy seeds use, or opium and "pharmaceutical" codeine use in cases when opiate use has been confirmed by detection of morphine and codeine in the urine. As well as being a constituent of opium, reticuline in the urine of opium users may also result from the metabolic demethylation of the three other benzyltetrahydroisoquinoline opium alkaloids: codamine, laudanosine and laudanine.  相似文献   

16.
Reticuline (a precursor of opium alkaloids) was detected and characterised as its trimethylsilyl ethers, acetyl esters and methyl ethers by GC–EIMS and GC–CIMS in opium and the urine of opium users after hydrolysis by acid or β-glucuronidase as coextractive of morphine. Because this compound cannot be detected in heroin and poppy seeds, it is suggested as a differentiating marker between opium and heroin use, opium and poppy seeds use, or opium and “pharmaceutical” codeine use in cases when opiate use has been confirmed by detection of morphine and codeine in the urine. As well as being a constituent of opium, reticuline in the urine of opium users may also result from the metabolic demethylation of the three other benzyltetrahydroisoquinoline opium alkaloids: codamine, laudanosine and laudanine.  相似文献   

17.
The objective of this study was to investigate the accuracy of screening postmortem whole blood for oxycodone using the ratio of the oxycodone immunoassay response to the response for the specimen obtained with a general opiate-class immunoassay. Fifty eight specimens which were negative for opiates and 158 postmortem whole blood specimens positive for opiates including 66 specimens known to contain oxycodone were assayed. Specimens were diluted 1:5 with assay buffer and analyzed by both the Neogen Oxymorphone/Oxycodone ELISA and the Neogen Opiate Group ELISA (Neogen Corporation, Lexington KY). The oxycodone equivalents in ng/mL from the Oxymorphone/Oxycodone ELISA were divided by the morphine equivalents in ng/mL from the Opiates ELISA to obtain an Oxycodone/Opiates Response Ratio. This ratio was compared with the GC/MS data for all specimens and for opiate positive specimens. Receiver Operating Characteristic (ROC) analysis suggested that optimum relative response ratio was 2.0. The sensitivity of the ELISA response ratio for the presence of oxycodone at a response ratio cutoff of 2.0 was 89.4% +/- 3.8% and the specificity was 88.1% +/- 3.2%. Specimens with a ratio of 2.0 or higher had a greater than 50% probability (positive predictive value) of containing oxycodone in a population with a greater than 15% prevalence of oxycodone.  相似文献   

18.
The objective of this study was to develop a two-step strategy for analysis of opiates and cocaine in hair samples involving an immunological screening procedure followed by confirmation of results using gas chromatography-mass spectrometry (GC-MS). A semi-quantitative automated competitive enzyme-linked immunosorbent assay (ELISA) methodology using Oral Fluid Micro-Plate Enzyme Immunoassays (Orasure Technologies, Inc.) was developed and validated. Applicability was proven by analysis of authentic head hair samples from drug users (n=103) and from opiate associated fatalities (n=21). The optimum cutoff values for the ELISA tests were 0.1 ng cocaine-equivalents/mg hair and 0.05 ng morphine-equivalents/mg hair using a 50 mg hair sample. Both ELISA tests had a sensitivity of 100%, the specificity was 66% for cocaine-equivalents and 42% for morphine-equivalents. The intraassay precision was 11% for the cocaine and 3% for the opiates ELISA, while interassay precision was 12% for the cocaine and 4% for the opiates ELISA test. The actual analyte concentrations in the hair samples were determined using GC-MS and were between 0.04 and 5.20 ng/mg for heroin (HER), between 0.04 and 30.01 ng/mg for 6-monoacetylmorphine (MAM), between 0.03 and 11.87 ng/mg for morphine (MOR), between 0.02 and 1.84 ng/mg for codeine (COD), between 0.02 and 2.48 ng/mg for acetylcodeine (AC), between 0.01 and 21.37 ng/mg for cocaine (COC), between 0.03 and 10.51 ng/mg for benzoylecgonine (BE) and between 0.05 and 1.26 ng/mg for cocaethylene (CE). The automated ELISA tests were proven to be valid screening procedures for the detection of cocaine and opiates in hair as confirmed by GC-MS. Screening methods provide rapid and inexpensive automated pre-test procedures to detect drugs in hair or other matrices. For forensic purposes screening therefore represents an ideal complement to routinely applied GC-MS procedures.  相似文献   

19.
Oral fluid is an interesting alternative matrix for drug testing in many environments, including law enforcement, workplace drug testing, and drug treatment facilities. Performance characteristics of the FDA-cleared, qualitative, Cozart RapiScan Opiate Oral Fluid Drug Testing System (Opiate Cozart RapiScan System or Opiate CRS) were compared to the semi-quantitative Cozart Microplate EIA Opiate Oral Fluid Kit (Opiate ELISA) and to gas chromatography/mass spectrometry (GC/MS). The following oral fluid opiate cutoffs were evaluated: the GC/MS limit of quantification (LOQ) of 2.5 mg/l; 15 microg/l currently used for oral fluid testing in the United Kingdom (UK); 30 microg/l (Opiate CRS cutoff); and 40 microg/l, the proposed Substance Abuse and Mental Health Services Administration (SAMHSA) cutoff. Subjects provided informed consent to participate in this IRB-approved research and resided on the closed research ward throughout the study. Three oral codeine doses of 60 mg/70 kg were administered over a 7-day period. After a 3-week break, subjects received three doses of 120 mg/70 kg within 7 days. Oral fluid specimens (N = 1273) were analyzed for codeine (COD), norcodeine (NCOD), morphine (MOR) and normorphine (NMOR) by GC/MS with an LOQ of 2.5 microg/l for all analytes. MOR and NMOR were not detected in any sample; 26.5% of the specimens were positive for COD and 13.7% for NCOD. Opiate CRS uses a preset, qualitative cutoff of 10 microg/l; this is equivalent to 30 microg/l in undiluted oral fluid as the oral fluid collection process involves a 1:3 dilution with buffer. Sensitivity, specificity, and efficiency of Opiate CRS compared to Opiate ELISA were 98.6, 98.1, and 98.2% at a 30 microg/l cutoff and 99.0, 96.2, and 96.6% at a 40 microg/l cutoff. Compared to the much lower GC/MS LOQ of 2.5 microg/l, sensitivity, specificity and efficiency were 66.8, 99.3 and 90.7%. Increasing the GC/MS cutoff to the current UK level yielded performance characteristics of 81.5% (sensitivity), 99.3% (specificity), and 95.4% (efficiency). Using a GC/MS cutoff identical to the preset Opiate CRS cutoff yielded sensitivity, specificity, and efficiency of 88.5, 99.2, and 97.5%, respectively. At the proposed SAMSHA confirmation cutoff of 40 microg/l, sensitivity increased with little change in specificity and efficiency (91.3% sensitivity, 98.9% specificity, and 97.5% efficiency). Oral fluid is a suitable matrix for detecting drugs of abuse. Opiate CRS, with a 30 microg/l cutoff, is sufficiently sensitive, specific and efficient for oral fluid opiate analysis, performing similarly to Opiate ELISA at the same cutoff, and having performance characteristics >91% when compared to GC/MS at the proposed SAMHSA cutoff.  相似文献   

20.
Blood and urine samples are collected when the Norwegian police apprehend a person suspected of driving under the influence of drugs other than alcohol. Impairment is judged from the findings in blood. In our routine samples, urine is analysed if morphine is detected in blood to differentiate between ingestion of heroin, morphine or codeine and also in cases where the amount of blood is too low to perform both screening and quantification analysis. In several cases, the collection of urine might be time consuming and challenging. The aim of this study was to investigate if drugs detected in blood were found in oral fluid and if interpretation of opiate findings in oral fluid is as conclusive as in urine. Blood, urine and oral fluid samples were collected from 100 drivers suspected of drugged driving. Oral fluid and blood were screened using LC-MS/MS methods and urine by immunological methods. Positive findings in blood and urine were confirmed with chromatographic methods. The analytical method for oral fluid included 25 of the most commonly abused drugs in Norway and some metabolites. The analysis showed a good correlation between the findings in urine and oral fluid for amphetamines, cocaine/benzoylecgonine, methadone, opiates, zopiclone and benzodiazepines including the 7-amino-benzodiazepines. Cocaine and the heroin marker 6-monoacetylmorphine (6-MAM) were more frequently detected in oral fluid than in urine. Drug concentrations above the cut-off values were found in both samples of oral fluid and urine in 15 of 22 cases positive for morphine, in 18 of 20 cases positive for codeine and in 19 of 26 cases positive for 6-MAM. The use of cannabis was confirmed by detecting THC in oral fluid and THC-COOH in urine. In 34 of 46 cases the use of cannabis was confirmed both in oral fluid and urine. The use of cannabis was confirmed by a positive finding in only urine in 11 cases and in only oral fluid in one case. All the drug groups detected in blood were also found in oral fluid. Since all relevant drugs detected in blood were possible to find in oral fluid and the interpretation of the opiate findings in oral fluid was more conclusive than in urine, oral fluid might replace urine in driving under the influence cases. The fast and easy sampling is time saving and less intrusive for the drivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号