首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 296 毫秒
1.
采用窄范围两性电解质聚丙烯酰胺凝胶等电聚焦加免疫吸印技术,对人血痕中 Gc 亚型进行分型,并调查了北京地区284名无关汉族群体的 Gc 亚型的分布及基因频率。结果显示:Gc~(IF)0.4287,Gc~(IS)0.2500.Gc~20.3222.观察值与期望值吻合度良好(ΣX~2=0.7530,P>0.80).Gc 的个人识别率为0.6507.且室温下保存7周的血痕可以准确判型。将调查结果与中国其它地区及国外不同人种 Gc 亚型的表型的分布与基因频率进行了比较,发现地理及人种间差异明显。  相似文献   

2.
Gc(维生素D结合蛋白)的遗传多态性由Hirschfeld首次发现。用免疫电泳或聚丙稀胺凝胶园盘电泳可检查Gc三种表型:Gc1-1、Gc2-1、与Gc2-2,它们受一对等位基因Gc~1与Gc~2的控制。本文调查了四川省茂汶县羌族三种Gc表型的分布,算出其基因频率,作为羌族人群亲子鉴定的理论根据。  相似文献   

3.
型特异性组分(Gc)和转铁蛋白(Tf)都是人血清中的蛋白成份,具有遗传多态性.Smith(1957年)和Hirschfeld(1959年)分别用淀粉凝胶电泳和免疫电泳检测了Tf和Gc的多态性.Tf分为三种常见表型:TfBC、TfCC、TfDC.Gc又分为三种常见表型:Gc~(1-1)、Gc~(2-1)、Gc~(2-2).以后国内外许多学者对Tf及Gc的生化、遗传和免疫特征又做了大量的研究,并且测定了世界上不  相似文献   

4.
目的探讨建立Gc亚型检测的复合MS-PCR法及其应用价值。方法根据Gc基因中的2处点突变,设计2对片段相差5bp的等位基因特异性引物和1条公共引物进行复合MS-PCR,分析Gc多态性,并调查武汉地区218例汉族无关个体Gc多态性和鉴定10例亲子关系。结果复合MS-PCR检测的Gc基因型,与AmpliTypePM试剂盒的分型结果一致;武汉地区汉族人群Gc基因的3个常见等位基因Gc1F、Gc1S、Gc2的基因频率分别为0.4816、0.2592、0.2592,观察杂合度(Hobs)、期望杂合度(Hexp)、多态性信息含量(PIC)、个人识别能力(DP)、非父排除率(PE)分别为0.6193、0.6359、0.6253、0.7974、0.3480,基因型分布符合Hardy-Weinberg平衡;真三联体和非真三联体亲子鉴定各5例,前者不排除父子关系,与常规STR分型一致,后者经Gc-MS-PCR分型排除2例。结论建立复合MS-PCR法检测Gc亚型在法医物证鉴定中有实用价值。  相似文献   

5.
1959年Hirschfeld用免疫电泳方法研究人血清α_2—球蛋白时,发现一些与Hp无关的沉淀带,根据其迁移率可以分为快速、中速和慢速三种。这类蛋白被称为型特异性成分Gc(Group-Specific Compon-ent),受控于常染色体上的两个共显性等位基因Gc~1和Gc~2。而后进一步研究发现Gc的主要生理功能是结合并传递维生素D,故又被称为维生素D结合蛋白。  相似文献   

6.
周立  吴梅筠  李元志 《法医学杂志》1989,5(2):18-19,F003
前言血型特异性成分(Gc)和结合珠蛋白(Hp)是两种血清球蛋白,分别具有三种遗传表型Gc1—1,Gc2-1,Gc 2—2,和Hp1-1,Hp2-1,Hp2-2,按孟德尔遗传定律遗传,是法医学个人识别及亲权鉴定的两个重要遗传标记。一般情况下,检测血清Gc和Hp需要分别配制凝胶、凝胶缓冲  相似文献   

7.
作者采用超薄层聚丙烯酰胺凝胶等电聚焦法检测了142例西藏地区无关藏族青年男女GC亚型,发现6例变异型,其中2例1A变异;1例1c变异;3例1F1S-2变异,这种新的变异型,迄今国内外尚未见报道。GC亚型的基因频率分别为:GC*1F=0.3921、GC*1S=0.3705、GC*2=0.2266、GC*1A=0.0072、GC*1C=0.0036。个人识别机率为0.8079;非父排除率为0.3430。  相似文献   

8.
作者应用等电聚焦加免疫印迹技术,样品经过神经氨酸酶的预处理,首次建立了同步检测血浆ORM1亚型和Gc亚型的分型方法。本法累计个人识别机率为0.8063,累计非父排除率为0.4837。是同步电泳分型中鉴别机率较高的一种。  相似文献   

9.
<正> 本文采用聚丙烯酰胺凝胶园盘电泳(PAGE—disc)法,分别检测血液中Hp(结合珠蛋白)、Gc(型特异性成分)两种血清型,调查了254名内蒙古地区纯蒙古族18~25岁健康人群两种血清型Hp和Gc的表型分布及基因频率,并与其他种族人群的基因频率进行比较。根据检测结果得出Hp、Gc两种血清型在内蒙地区纯蒙族人群中的表型分布及基因频率,见表1。x~2  相似文献   

10.
<正> 型特性异成分(Group Specific Component,简称Gc)是人血清中的一组α_2球蛋白。1959年,Hirschfeld用免疫电泳法首先发现Gc,并将人群分为Gc1-1,2-1,和2-2三型。此后,许多学者对Gc进行了多方面的研究,证实Gc的多态性是由按孟德尔遗传方式的基因控制的。许多国家和地区的法医学工作者已把Gc分型应用于实际检案工作中。  相似文献   

11.
改良磺基水杨酸法显示GC谱带及两个新的GC变异型的发现   总被引:1,自引:0,他引:1  
本文采用改良了Kühnl报告的磺基水杨酸沉淀法显示GC谱带的技术,显示了六种常见的GC亚型和GC变异型。并且采用该法发现了两个新的GC变异型基因Gc~(1c3)和Gc~(2c7),其基因频率分別为0.0008和0.0004。本法经济、快速,谱带清晰,可取代需抗GC血清的常规免疫固定技术。  相似文献   

12.
血清蛋白多态性的同步检测可节省检材、简化操作步骤、省时省力.本文用醋酸纤维素薄膜电泳免疫固定法同步检测血清型特异成份(Group-Specific component,Gc)、转铁蛋白(Transferrin,Tf)和补体第三成份(Complment 3,C_3)的表型,调查了成都地区汉族116名无亲缘关系的健康献血员的表型频率,现将结果报导如下:  相似文献   

13.
The limits of determination of Gc subtypes in bloodstains were compared between the immunofixation method and the sulfosalicylic acid precipitation method using isoelectric focusing on polyacrylamide gel. By the immunofixation method Gc subtyping in bloodstains was successfully made at 37 degrees C after 7 weeks, at room temperature after 17 weeks and at 4 degrees C even after 25 weeks storage. By the sulfosalicylic method Gc subtypes were no longer able to be determined a few weeks after stain formation. The superiority of the results obtained by the immunofixation method makes it the recommended method for the Gc subtyping from bloodstains in medicolegal practice.  相似文献   

14.
The identification of group specific component (Gc) subtypes derived from blood-stains by separator isoelectric focusing in micro-ultrathin polyacrylamide gels (interelectrode distance: 50 mm) containing 4.5 to 5.4 pharmalytes is described. The separation achieved between Gc 1F and Gc 1S bands is compared favorably with that obtained using separator isoelectric focusing in conventional polyacrylamide gels dimensions (interelectrode distance: 110 to 120 mm). The technique is rapid and economical, and the immunoblotting method described is more sensitive than immunofixation followed by silver staining.  相似文献   

15.
The distribution of Gc phenotypes in the population of Veneto was investigated by ultrathin-layer isoelectric focusing. In our sample (n = 732) the six common phenotypes, Gc 1S, 1F, 1S1F, 2, 2-1S, 2-1F and a further phenotype, GC 1S1C3, were observed and the following frequencies calculated: Gc 1S = 0.560792; GC 1F = 0.159153; Gc2 = 0.277323; Gc 1C3 = 0.002732. Our gene frequencies have been compared with those found in other populations.  相似文献   

16.
A method is described for subtyping group-specific component (Gc) derived from human bloodstains. Bloodstained cuttings were extracted in 6 M urea. The extracts were subjected to ultrathin-layer polyacrylamide gel isoelectric focusing in the pH 4.5-5.4 range. After isoelectric focusing, Gc was detected by immunofixation in cellulose acetate membranes. This method permitted the successful typing of Gc in at least four-month-old bloodstains maintained at room temperature. Bloodstains from 266 liquid blood samples of known origin were subjected to both this method and immunofixation conventional agarose gel electrophoresis with no phenotypic discrepancies observed. The Gc population data for Whites from Baltimore, Maryland, were homogeneous with white sample populations from other geographical locations within the U.S.A.; while Gc data from northern U.S.A. black sample populations appeared to be heterogeneous compared with a southern United States black sample population.  相似文献   

17.
It is known that the typing of group-specific component (Gc protein) in human blood stains is difficult since Gc protein of the extracts of blood stains migrates more anodally to the α1-globulin region in agar-gel immunoelectrophoresis, while Gc protein in liquid blood normally migrates to the α2-globulin region. We have reported that the Gc protein found in the α1-region is the result of binding of actin to Gc protein (Shinomiya, K., Kimura, H., Yoshida, K., and Shinomiya, T., J. Biochem., 92 (1982) 1163–1171, which renders it difficult to determine the Gc-phenotypes in the blood stains. On the basis of the above findings, we developed the method of phenotyping the Gc protein of human blood stains by agar-gel immunoelectrophoresis. Since the binding activity of actin to Gc protein is lost after treatment with a high concentration of guanidine HCl, the extracts of blood stains were treated with 4 M guanidine HCl to dissociate Gc protein and actin and then dialyzed to remove guanidine HCl. By this method we are able to determine the phenotypes of Gc protein in blood stains. The method we have developed is a useful tool in the forensic laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号