首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatalities implicating psychedelic mushrooms are not a common clinical situation in everyday forensic medicine. Despite classification as an illegal drug in many countries, psilocybin mushrooms have the reputation of being safe. We report the case of a young man who jumped from a second story balcony under the influence of psilocybin mushrooms. The psilocin assay was performed by gas chromatography coupled to an electron‐impact ionization time‐of‐flight detector (GC‐EI‐TOF) after solid‐phase extraction. Total psilocin was quantified in peripheral and cardiac blood as 60 and 67 ng/mL, respectively, and in urine (2230 ng/mL), bile (3102 ng/mL), and vitreous humor (57 ng/mL). This case report and review of literature highlights the danger of psilocybin mushrooms. Isolated use of psilocybin mushrooms by a regular consumer without psychiatric history, even under “safe” circumstances, can lead to a fatal outcome.  相似文献   

2.
Active compounds of some mushrooms e.g. Psilocybe cubensis, Paneolus subalteatus or Stropharia coronilla, the psychotropic agents psilocybin and psilocin, have hallucinogenic effects. In one case of 'magic mushroom' intake, we had to analyse blood and urine. Psilocin was detected in the urine with REMEDi HS. Most of the psilocin was excreted as the glucuronide. Therefore an enzymatic hydrolysis should be the first step in analysis. Free psilocin was determined at a concentration of 0.23 mg/l while the total amount was 1.76 mg/l urine. The concentration of psilocin in serum was too low for detection with REMEDi HS. We proved a GC-MS-method with d(3)-morphine as internal standard and silylation with MSTFA. Similarly to urine, most of the psilocin in serum was found in the conjugated form. The concentration of free psilocin was 0.018 mg/l, that of total psilocin, 0.052 mg/l serum.  相似文献   

3.
A new method has been developed for the rapid analysis of psilocybin and/or psilocin in fungus material using ion mobility spectrometry. Quantitative analysis was performed by gas chromatography-mass spectrometry after a simple one-step extraction involving homogenization of the dried fruit bodies of fungi in chloroform and derivatization with MSTFA. The proposed methods resulted in rapid procedures useful in analyzing psychotropic fungi for psilocybin and psilocin.  相似文献   

4.
This paper describes a procedure for the determination of psilocin and psilocybin in mushroom extracts using high-performance liquid chromatography with postcolumn chemiluminescence detection. A number of extraction methods for psilocin and psilocybin in hallucinogenic mushrooms were investigated, with a simple methanolic extraction being found to be most effective. Psilocin and psilocybin were extracted from a variety of hallucinogenic mushrooms using methanol. The analytes were separated on a C12 column using a (95:5% v/v) methanol:10 mM ammonium formate, pH 3.5 mobile phase with a run time of 5 min. Detection was realized through a dual reagent chemiluminescence detection system of acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II). The chemiluminescence detection system gave improved detectability when compared with UV absorption at 269 nm, with detection limits of 1.2 x 10(-8) and 3.5 x 10(-9) mol/L being obtained for psilocin and psilocybin, respectively. The procedure was applied to the determination of psilocin and psilocybin in three Australian species of hallucinogenic mushroom.  相似文献   

5.
The objective of the present study was to develop and validate a liquid chromatographic method with electrochemical detection to measure alpha amanitin concentrations in urine after sample pretreatment with double mechanism (reversed phase/cation exchange) solid-phase extraction cartridges. The urine samples (10 ml) were purified and concentrated to 1 ml with elimination of matrix contaminants. The extracts were then separated by isocratic reversed-phase chromatography using a C18 column (4.6 mm×25 cm) with a mobile phase composed of 0.005 M phosphate buffer (pH 7.2) and acetonitrile (90:10). Coulometric detection was performed by applying an oxidation potential of +500 mV to a porous graphite electrode in a low-volume analytical cell. The limit of quantitation was 10 ng/ml with a signal-to-noise ratio=25. The linearity studied on spiked urine was satisfactory (r=0.9966) from 10 ng/ml to 200 ng/ml. The average extraction recovery of alpha amanitin was 78%, determined using spiked urine samples ranging from 10–300 ng/ml. The intra-assay precision was checked at 10, 50 and 100 ng/ml levels (n=10) in spiked urine samples, with resulting coefficients of variation of 3.6%, 2% and 1.5%, respectively.  相似文献   

6.
A simple method of detection was developed for gamma-hydroxybutyrate (GHB). The method involves the derivatization of GHB using a hexyl-chloroformate procedure in aqueous media (such as water or urine), extraction of the derivatization product directly from the sample using solid-phase microextraction, and subsequent separation and detection with gas chromatography quadrupole ion trap mass spectrometry. The deuterated form of GHB (GHB-D6) is used as an internal standard for quantitation. The method was linear for GHB-spiked pure water samples from 2 to 150 microg/mL GHB with a detection limit of 0.2 microg/mL. Spiked urine samples showed linearity from 5 to 500 microg/mL GHB with a detection limit of 2 microg/mL. The SPME-GC/MS method is applied to actual case samples, and the results are compared to those values obtained using a conventional GC/MS method. Sensitivity and linearity are comparable to those seen using traditional methods of separation, yet the SPME method is superior due to the simplicity, speed of analysis, reduction in solvent waste, and ability to differentiate between GHB and gamma-butyrolactone (GBL).  相似文献   

7.
GC法检测血液和尿液中甲基苯丙胺和咖啡因   总被引:1,自引:1,他引:0  
目的建立同时测定血、尿中甲基苯丙胺和咖啡因含量的方法。方法应用GC/NPD技术,以4-苯基丁胺为内标,直接碱化,用氯仿提取,三氟乙酸酐衍生化,8CB熔融石英毛细管柱(30m×0.25mm×0.25μm)分析。结果生物样品中甲基苯丙胺与咖啡因在0.012—7.5μg/mL浓度范围内线性关系良好,检测限(S/N=3)依次为1.2ng/mL,0.6ng/mL(血);1.6ng/mL,0.8ng/mL(尿)。苯丙胺在0.017—10.0μg/mL浓度范围内线性关系良好,检测限为1.6mg/mL(血),3.2ng/mL(尿)。所有样本回收率均大于85%。结论本方法准确、灵敏,适用于血、尿中甲基苯丙胺及其代谢物苯丙胺的三氟乙酸酐衍生化物和咖啡因的同时检测,为判定滥用毒品种类、追查毒品来源以及研究生物体内甲基苯丙胺和咖啡因的交互影响提供了检测手段。  相似文献   

8.
Accurate and sensitive analytical methods for psilocin (PC) and psilocybin (PB), tryptamine-type hallucinogens contained in "magic mushrooms," were investigated using liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS-MS). The chromatographic separation on an ODS column and mass spectral information gave complete discrimination between PC and PB without derivatization. The mass spectrometric detection had a high sensitivity, and the tandem mass spectrometric detection provided more specificity and accuracy, as well as high sensitivity. The detection limits ranged from 1 to 25 pg by LC-MS in the selected ion monitoring mode, and the intra- and inter-day coefficients of variation were estimated to be 4.21-5.93% by LC-MS-MS in the selected reaction monitoring mode. By applying the present LC-MS-MS technique to four real samples, the contents of PC and PB were found to vary over a wide range (0.60-1.4 and 0.18-3.8 mg/g dry wt. for PC and PB, respectively) between samples.  相似文献   

9.
A rapid colorimetric method for detection of p‐phenylenediamine (PPD) in various biological samples is developed. The o‐cresol test for acetaminophen detection has been modified to detect PPD in blood, urine, gastric contents, and liver. After precipitating protein with trichloroacetic acid solution (2 mL, 10% w/v), biological specimens were required to convert PPD metabolites to PPD by acid hydrolysis. Finally, o‐cresol solution (1 mL, 1% w/v), hydrogen peroxide (200 μL, 3%v/v), and concentrated ammonium hydroxide (0.5 mL) were added in the biological samples. The presence of PPD was indicated by formation of violet color which was turned to bluish green color within 10–15 min. The limit of detection was found to be 2 mg/L in blood, urine, and gastric contents and 2 mg/Kg in liver. This method is also free from any potential interference by p‐aminophenol, acetaminophen, and other amine drugs under test conditions. This method was successfully employed to thirteen fatal cases of PPD poisoning.  相似文献   

10.
This paper reports an investigation into the temporal stability of aqueous solutions of psilocin and psilocybin reference drug standards over a period of fourteen days. This study was performed using high performance liquid chromatography utilising a (95:5% v/v) methanol: 10 mM ammonium formate, pH 3.5 mobile phase and absorption detection at 269 nm. It was found that the exclusion of light significantly prolonged the useful life of standards, with aqueous solutions of both psilocin and psilocybin being stable over a period of seven days.  相似文献   

11.
Ketamine (KT) is widely abused for hallucination and also misused as a "date-rape" drug in recent years. An analytical method using positive ion chemical ionization-gas chromatography-mass spectrometry (PCI-GC-MS) with an automatic solid-phase extraction (SPE) apparatus was studied for the determination of KT and its major metabolite, norketamine (NK), in urine. Six ketamine suspected urine samples were provided by the police. For the research of KT metabolism, KT was administered to SD rats by i.p. at a single dose of 5, 10 and 20mg/kg, respectively, and urine samples were collected 24, 48 and 72 h after administration. For the detection of KT and NK, urine samples were extracted on an automatic SPE apparatus (RapidTrace, Zymark) with mixed mode type cartridge, Drug-Clean (200 mg, Alltech). The identification of KT and NK was by PCI-GC-MS. m/z238 (M+1), 220 for KT, m/z 224 (M+1), 207 for NK and m/z307 (M+1) for Cocaine-D(3) as internal standard were extracted from the full-scan mass spectrum and the underlined ions were used for quantitation. Extracted calibration curves were linear from 50 to 1000 ng/mL for KT and NK with correlation coefficients exceeding 0.99. The limit of detection (LOD) was 25 ng/mL for KT and NK. The limit of quantitation (LOQ) was 50 ng/mL for KT and NK. The recoveries of KT and NK at three different concentrations (86, 430 and 860 ng/mL) were 53.1 to 79.7% and 45.7 to 83.0%, respectively. The intra- and inter-day run precisions (CV) for KT and NK were less than 15.0%, and the accuracies (bias) for KT and NK were also less than 15% at the three different concentration levels (86, 430 and 860 ng/mL). The analytical method was also applied to real six KT suspected urine specimens and KT administered rat urines, and the concentrations of KT and NK were determined. Dehydronorketamine (DHNK) was also confirmed in these urine samples, however the concentration of DHNK was not calculated. SPE is simple, and needs less organic solvent than liquid-liquid extraction (LLE), and PCI-GC-MS can offer both qualitative and quantitative information for urinalysis of KT in forensic analysis.  相似文献   

12.
'Magic mushrooms' is the name most commonly given to psychoactive fungi containing the hallucinogenic components psilocybin and psilocin. Material confiscated by local authorities was examined using morphologic, microscopic, microchemical, and toxicological methods. Psilocybe cubensis was the most popular mushroom in the sample collective, followed by Psilocybe semilanceata, Panaeolus cyanescens and Psilocybe tampanensis. The alkaloid content was determined with <0.003-1.15% of psilocybin and 0.01-0.90% psilocin. Panaeolus cyanescens was the mushroom with highest levels of psilocybin and psilocin.  相似文献   

13.
There has been burgeoning interest in psilocybin-use for the treatment of various neurological and neurodegenerative diseases. Psilocybin is mistakenly perceived as the principal pharmacologically active compound due to its high concentrations found in magic mushrooms; however, it is the prodrug of psilocin. Despite the expanding body of clinical research seeking to understand the pharmacodynamic/pharmacokinetic properties of psilocin, and its role in inducing dramatic changes to cognitive function, there has not been a corresponding increase in the development of sensitive analytical methods that can quantify psilocin in different biological fluids. Existing analytical methods have been developed using plasma, serum, and urine as the matrix of choice, but with the unknown blood-to-plasma ratio of psilocin, any pharmacokinetic conclusions drawn solely on plasma data may be misleading. Thus, the main objective of this study is to develop the first analytical method that utilizes SPE and LC–MS/MS to quantify psilocin in human whole blood. The SPE procedure yielded a high recovery efficiency (≥89%) with minimal matrix effects. The method was validated according to ANSI/ASB 036 guidelines. Linearity was between 0.7–200 ng/mL and encompassed previously reported ranges found in plasma/serum. Bias, within- and between-run precision for all quality controls met ANSI/ASB 036 acceptability criteria. Endogenous/exogenous interferences and carryover were negligible. Psilocin stability was assessed at 4°C over 48 h and was considered stable. Although a proof-of-concept study will need to be performed to characterize the method, this analytical workflow was able to detect and quantify psilocin in human whole blood at low limits of quantification.  相似文献   

14.
Acetylcodeine (AC), an impurity of illicit heroin synthesis, was investigated as a urinary biomarker for detection of illicit heroin use. One hundred criminal justice urine specimens that had been confirmed positive by GC/MS for morphine at concentrations >5000 ng/ml were analyzed for AC, 6-acetylmorphine (6AM), codeine, norcodeine and morphine. The GC/MS analysis was performed by solid phase extraction and derivatization with propionic anhydride. Total codeine and morphine concentrations were determined by acid hydrolysis and liquid/liquid extraction. AC was detected in 37 samples at concentrations ranging from 2 to 290 ng/ml (median, 11 ng/ml). 6AM was also present in these samples at concentrations ranging from 49 to 12 600 ng/ml (median, 740 ng/ml). Of the 63 specimens negative for AC, 36 were positive for 6AM at concentrations ranging from 12 to 4600 ng/ml (median, 124 ng/ml). When detected, the AC concentrations were an average of 2.2% (0.25 to 10.2%) of the 6AM concentrations. There was a positive relationship between AC concentrations and 6AM concentrations (r=0.878). Due to its very low concentration in urine, AC was found to be a much less reliable biomarker for illicit heroin use than 6AM in workplace or criminal justice urine screening programs. However, AC detection could play an important role in determining if addicts in heroin maintenance programs are supplementing their supervised diacetylmorphine doses with illicit heroin.  相似文献   

15.
目的建立尿中苯基脲类除草剂代谢物的气相色谱分析方法。方法在检材中加入环己烷、固体氯化钠等试剂,分取有机相,在60℃水浴中加入衍生化试剂反应0.5h,冷却后洗去衍生化试剂,分取有机相进样进行气相色谱分析。结果尿中苯基脲类代谢物4一氯苯胺和3,4-二氯苯胺的检出限在5ng/mL以下,回收率良好,相对标准偏差均低于5%。在0.1μg~5μg/mL间线性关系良好。结论该法高效、灵敏、简便,适合对尿等生物检材中脲类除草剂的代谢物的定性和定量测定。  相似文献   

16.
目的本文对兽药"舒泰"中有效成分进行了结构确证,并建立了生物检材中替来他明和唑拉西泮的快速检验方法。方法在血液和尿液的生物检材中,通过加标实验,经QuEChERS萃取后,进行LC/MS对替来他明和唑拉西泮的定性定量检测分析。结果在血液和尿液的生物样品的加标实验中,替来他明的RSD%在0.5%~3.5%,唑拉西泮的RSD在0.5%~1.1%;替来他明的回收率在75.8%~100.3%,唑拉西泮的回收率在68.8%~76.6%,其中血液中替来他明的方法检出限为0.16ng/mL,尿液中为0.20ng/mL,唑拉西泮在血液中的方法检出限0.17ng/mL,尿液中为0.22ng/mL。结论建立的QuEChERS萃取方法,操作流程简便,方法重现性好,只需100μL取样量,更适合于痕量生物检材中替来他明和唑拉西泮的检验分析。  相似文献   

17.
目的建立尿样和头发中甲基苯丙胺的基质辅助激光解吸飞行时间质谱(matrix-assisted laser desorption/ionization time of flight mass spectrometry,MALDI-TOF-MS)分析方法。方法尿样采用液液提取,头发经0.1mol/L盐酸水解后采用液液提取,以碳纳米管为基质应用MALDI-TOF-MS法检测。结果尿样中甲基苯丙胺的最低检测限(LOD)为0.5μg/mL,线线范围为线性范围为0.5~100μg/mL(R2=0.9970);毛发中甲基苯丙胺的最低检测限(LOD)为0.4ng/mg,线性范围为0.4~60ng/mg(R2=0.9976),对送检案例中尿样和头发检材进行检测,效果良好。结论本方法适用于尿样和头发中甲基苯丙胺的分析,与传统气相色谱质谱联用和液相色谱-质谱联用相比,分析速度更快,适合大批量样品同时分析。  相似文献   

18.
尿中氯胺酮及其代谢物检测的研究   总被引:3,自引:0,他引:3  
目的建立氯胺酮滥用者尿中氯胺酮及其代谢物检测方法。方法尿液用有机溶剂液-液萃取,气相色谱/氮磷检测器、电子捕获检测器、氢火焰检测器和气-质联用仪测定。结果确认了尿液中氯胺酮的主要代谢物,尿液中氯胺酮及去甲氯胺酮的最小检测限均为2ng/mL,脱氢去甲氯胺酮的最小检测限为5ng/mL。结论所建方法快速、灵敏、准确,能够满足氯胺酮滥用者尿液检测的需要。  相似文献   

19.
尿中氯胺酮及其代谢物盘鉴和GC/MS/SIM测定   总被引:10,自引:0,他引:10  
目的 研究尿中氯胺酮(KET)及其代谢物去甲基氯胺酮(NKET)的盘鉴(Disk SPE)。方法 用含有化学键合C18和强酸型强阳离子交换(SCX)基团的萃取柱SPEC.C18 AR/MP3萃取,加入萃取柱前的尿样用0.1mol/L磷酸盐缓冲溶液(pH 6)稀释,洗脱溶剂为含2%(v/v)氨水的乙酸乙酯;以2,4,6-三硝基甲苯(TNT)为色谱内标,GC/MS/SIM检测。结果 在加标量为0.5μg/mL、2μg/mL和6μg/mL的控制尿样中,KET和NKET的平均回收率分别为91.5%和79.9%,6次测定的RSD均为8.7%;线性范围0.02-8μg/mL,线性相关系数分别为0.9819和0.9964;检出限(S/N=3)分别为6ng/mL和4ng/mL;总离子色谱图背景低,杂质少。同一根萃取柱重复使用8次以上未见性能下降;嫌疑尿样中检出KET和/或NKET,和常规的液液萃取结果相符。结论 该方法适用于尿中KET和NKET的同时测定。  相似文献   

20.
Detection of illicit drugs in the environment, particularly in soils, often suggests the present or past location of a clandestine production center for these substances. Thus, development of efficient methods for the analysis and detection of these chemicals is of paramount importance in the field of chemical forensics. In this work, a method involving the extraction and retrospective confirmation of fentanyl, acetylfentanyl, thiofentanyl, and acetylthiofentanyl using trichloroethoxycarbonylation chemistry in a high clay-content soil is presented. The soil was spiked separately with each fentanyl at two concentrations (1 and 10 μg/g) and their extraction accomplished using ethyl acetate and aqueous NH4OH (pH ~ 11.4) with extraction recoveries ranging from ~56% to 82% for the high-concentration (10 μg/g) samples while ranging from ~68% to 83% for the low-concentration (1 μg/g) samples. After their extraction, residues containing each fentanyl were reacted with 2,2,2-trichloroethoxycarbonyl chloride (Troc-Cl) to generate two unique and predictable products from each opioid that can be used to retrospectively confirm their presence and identity using EI-GC-MS. The method's limit of detection (MDL/LOD) for Troc-norfentanyl and Troc-noracetylfentanyl were estimated to be 29.4 and 31.8 ng/mL in the organic extracts. In addition, the method's limit of quantitation for Troc-norfentanyl and Troc-noracetylfentanyl were determined to be 88.2 and 95.5 ng/mL, respectively. Collectively, the results presented herein strengthen the use of chloroformate chemistry as an additional chemical tool to confirm the presence of these highly toxic and lethal substances in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号