首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   14篇
外交国际关系   15篇
法律   140篇
中国政治   1篇
综合类   1篇
  2024年   2篇
  2023年   3篇
  2021年   1篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   6篇
  2014年   10篇
  2013年   8篇
  2012年   4篇
  2011年   8篇
  2010年   14篇
  2009年   14篇
  2008年   10篇
  2007年   18篇
  2006年   26篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有157条查询结果,搜索用时 202 毫秒
151.
152.
The 1.2 mm Electric Coring Tool (e-Core™) was developed to increase the throughput of FTA sample collection cards used during forensic workflows and is similar to a 1.2 mm Harris manual micro-punch for sampling dried blood spots. Direct short tandem repeat (STR) DNA profiling was used to compare samples taken by the e-Core tool with those taken by the manual micro-punch. The performance of the e-Core device was evaluated using a commercially available PowerPlex™ 18D STR System. In addition, an analysis was performed that investigated the potential carryover of DNA via the e-Core punch from one FTA disc to another. This contamination study was carried out using Applied Biosystems AmpflSTR™ Identifiler™ Direct PCR Amplification kits. The e-Core instrument does not contaminate FTA discs when a cleaning punch is used following excision of discs containing samples and generates STR profiles that are comparable to those generated by the manual micro-punch.  相似文献   
153.
154.
155.
156.
Victim identification initiatives undertaken in the wake of Mass Fatality Incidents (MFIs) where high-body fragmentation has been sustained are often dependent on DNA typing technologies to complete their mandate. The success of these endeavors is linked to the choice of DNA typing methods and the bioinformatic tools required to make the necessary associations. Several bioinformatic tools were developed to assist with the identification of the victims of the World Trade Center attacks, one of the most complex incidents to date. This report describes one of these tools, the Mass Disaster Kinship Analysis Program (MDKAP), a pair-wise comparison software designed to handle large numbers of complete or partial Short Tandem Repeats (STR) genotypes, and infer identity of, or biological relationships between tested samples. The software performs all functions required to take full advantage of the information content of processed genotypic data sets from large-scale MFIs, including the collapse of victims data sets, remains re-association, virtual genotype generation through gap-filling, parentage trio searching, and a consistency check of reported/inferred biological relationships within families. Although very few WTC victims were genetically related, the software can detect parentage trios from within a victim's genotype data set through a nontriangulated approach that screens all possible parentage trios. All software-inferred relationships from WTC data were confirmed by independent statistical analysis. With a 13 STR loci complement, a fortuitous parentage trio (FPT) involving nonrelated individuals was detected. Additional STR loci would be required to reduce the risk of an FPT going undetected in large-scale MFIs involving related individuals among the victims. Kinship analysis has proven successful in this incident but its continued success in larger scale MFIs is contingent on the use of a sufficient number of STR loci to reduce the risk of undetected FPTs, the use of mtDNA and Y-STRs to confirm parentage and of bioinformatics that can support large-scale comparative genotyping schemes capable of detecting parentage trios from within a group of related victims.  相似文献   
157.
Plant residue is currently an underutilized resource in forensic investigations despite the fact that many crime scenes, as well as suspects and victims, harbor plant‐derived residue that could be recovered and analyzed. Notwithstanding the considerable skill of forensic botanists, current methods of species determination could benefit from tools for DNA‐based species identification. However, DNA barcoding in plants has been hampered by sequence complications in the plant genome. Following a database search for usable barcodes, broad‐spectrum primers were designed and utilized to amplify and sequence the rbcL, trnL‐F, and rrn18 genetic loci from a variety of household plants. Once obtained, these DNA sequences were used to design species‐targeted primers that could successfully discriminate the source of plant residue from among the 21 species tested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号