首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
法律   2篇
  2024年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The enzyme α-amylase has long been a commonly targeted protein in serological tests for saliva. While being especially abundant in saliva, α-amylase is detectable in vaginal secretions, sweat, fecal matter, breast milk and other matrices. As a result, assays for α-amylase only provide a presumptive indication of saliva. The availability of mass spectrometry-based tools for the detection of less abundant, but more specific, protein targets (e.g., human statherin) has enabled the development of high confidence assays for human saliva. Sample throughput, however, has traditionally been low due to multi-step workflows for protein extraction, quantitation, enzymatic digestion, solid phase cleanup, and nano-/capillary-based chromatography. Here, we present two novel “direct” single-stage extraction strategies for sample preparation. These feature immunoaffinity purification and reversed-phase solid-phase microextraction in conjunction with intact mass analysis of human statherin for saliva identification. Mass analysis was performed on the Thermo Scientific Q-Exactive™ Orbitrap mass spectrometer with a 10-min analytical run time. Data analysis was performed using Byos® from Protein Metrics. Two sample sets were analyzed with a population of 20 individuals to evaluate detection reliability. A series of casework-type samples were then assayed to evaluate performance in an authentic forensic context. Statherin was confidently identified in 92% and 71% of samples extracted using the immunoaffinity purification and solid phase microextraction approaches, respectively. Overall, immunoaffinity purification outperformed the solid phase microextraction, especially with complex mixtures. In toto, robotic extraction and intact mass spectrometry enable the reliable identification of trace human saliva in a variety of sample types.  相似文献   
2.
Accurate quantification of DNA samples is an important step in obtaining accurate and reproducible short tandem repeat (STR) profiles. Quantitative real-time-PCR has improved the speed and accuracy of DNA quantification over earlier methods, albeit at significantly greater cost per reaction. Here, the performance of reduced volume (10 microL) DNA quantification assays using the Quantifiler Human DNA Quantification Kit was evaluated using commercial standards and single source biological stains (e.g., venous blood, saliva, and semen). In addition, casework-type samples including those subjected to environmental contaminants containing PCR inhibitors and samples having undergone extensive DNA degradation were also quantified. The concentration of DNA in various forensic samples ranged from 0 to 2.9 ng/microL depending on sample source and/or environmental insult. Compared to full-scale reactions, reduced volume assays displayed equivalent to improved amplification efficiency and sample-to-sample reproducibility (+/-0.01-0.17 C(T FAM)). Furthermore, the use of data from reduced-scale Quantifiler reactions facilitated the accurate determination of the amount of sample DNA extract needed to generate quality STR profiles. The use of 10 microL-scale Quantifiler reaction volumes has the practical benefit of increasing the effective number of reactions per kit by 250%; thereby reducing the cost per assay by 60% while consuming less sample. This is particularly advantageous in cases of consumptive testing.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号