首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
法律   2篇
  2018年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Despite an increasing literature on the decomposition of human remains, whether buried or exposed, it is important to recognise the role of specific microenvironments which can either trigger or delay the rate of decomposition. Recent casework in Northern England involving buried and partially buried human remains has demonstrated a need for a more detailed understanding of the effect of contrasting site conditions on cadaver decomposition and on the microenvironment created within the grave itself. Pigs (Sus scrofa) were used as body analogues in three inter-related taphonomy experiments to examine differential decomposition of buried human remains. They were buried at three contrasting field sites (pasture, moorland, and deciduous woodland) within a 15 km radius of the University of Bradford, West Yorkshire, UK. Changes to the buried body and the effect of these changes on hair and associated death-scene textile materials were monitored as was the microenvironment of the grave. At recovery, 6, 12 and 24 months post-burial, the extent of soft tissue decomposition was recorded and samples of fat and soil were collected for gas chromatography mass spectrometry (GCMS) analysis. The results of these studies demonstrated that (1) soil conditions at these three burial sites has a marked effect on the condition of the buried body but even within a single site variation can occur; (2) the process of soft tissue decomposition modifies the localised burial microenvironment in terms of microbiological load, pH, moisture and changes in redox status. These observations have widespread application for the investigation of clandestine burial and time since deposition, and in understanding changes within the burial microenvironment that may impact on biomaterials such as hair and other associated death scene materials.  相似文献   
2.
In very fragmentary remains, the thorough inventory of skeletal elements is often impossible to accomplish. Mass has been used instead to assess the completeness of the skeleton. Two different mass-based methods of assessing skeleton completeness were tested on a sample of experimentally burned skeletons with the objective of determining which of them is more reliable. The first method was based on a simple comparison of the mass of each individual skeleton with previously published mass references. The second method was based on mass linear regressions from individual bones to estimate complete skeleton mass. The clavicle, humerus, femur, patella, metacarpal, metatarsal and tarsal bones were used. The sample was composed of 20 experimentally burned skeletons from 10 males and 10 females with ages-at-death between 68 and 90 years old. Results demonstrated that the regression approach is more objective and more reliable than the reference comparison approach even though not all bones provided satisfactory estimations of the complete skeleton mass. The femur, humerus and patella provided the best performances among the individual bones. The estimations based on the latter had root mean squared errors (RMSE) smaller than 300 g. Results demonstrated that the regression approach is quite promising although the patella was the only reasonable predictor expected to survive sufficiently intact to a burning event at high temperatures. The mass comparison approach has the advantage of not depending on the preservation of individual bones. Whenever bones are intact though, the application of mass regressions should be preferentially used because it is less subjective.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号