首页 | 本学科首页   官方微博 | 高级检索  
     


Rapid amplification of commercial STR typing kits
Authors:Peter M. Vallone  Carolyn R. Hill  Daniele Podini  John M. Butler
Affiliation:aNational Institute of Standards and Technology, Gaithersburg, MD 20899-8312, USA;bDepartment of Forensic Sciences, The George Washington University, 2036 H St NW, Washington, DC 20052, USA
Abstract:Forensic DNA typing is currently conducted in approximately 8–10 h. The process includes DNA extraction, quantitation, multiplex PCR amplification, and fragment length detection. Today's commercial multiplex short tandem repeat (STR) typing kits are not optimized for rapid PCR thermal cycling. Current protocols require approximately 3 h for amplifying a multiplex containing 15 STR loci plus amelogenin. With the continuing development of miniaturization technologies such as microfluidic and micro-capillary devices, there is a desire to reduce the overall time required to type DNA samples. Such miniature devices could be used for initial screening at a crime scene, at a border, and at airports. There is also the benefit of reducing the required PCR amplification time for labs typing single-source reference samples. Surveys of fast processing polymerases working in combination with rapid cycling protocols have resulted in the development of a ‘rapid’ PCR amplification protocol. Results are obtained in less than 36 min run on a standard peltier-based thermal cycler employing a heating rate of 4 °C/s. Capillary electrophoresis characterization of the PCR products indicates good peak balance between loci, strong signal intensity and minor adenylation artifacts. Genotyping results are concordant with standard amplification conditions utilizing a standard 3 h (non-rapid) thermal cycling procedure. The rapid assay conditions are robust enough to routinely amplify 0.5 ng of template DNA (with 28 cycles).
Keywords:Rapid PCR   PCR   Multiplex   Biometrics   DNA
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号