首页 | 本学科首页   官方微博 | 高级检索  
     

基于数据驱动建模的毒情预测方法研究
引用本文:杨丽君,刘渝妍. 基于数据驱动建模的毒情预测方法研究[J]. 云南警官学院学报, 2012, 0(4): 27-32
作者姓名:杨丽君  刘渝妍
作者单位:1. 云南警官学院,云南·昆明650223
2. 昆明学院信息技术学院,云南·昆明650214
基金项目:2007年度云南省哲学社会科学研究基地课题《云南毒情评估与对策研究》阶段性成果
摘    要:数据驱动建模是一种非因果关系建模方法,针对传统回归模型依赖于经验,含有主观和盲目因素的问题,在模型设定阶段不需要一个以既有理论(或假说)为支持的理论模型,通过对数据结构的分析,依据数据自身的变化规律,利用外推机制描述时间序列数据的变化,从而有效解决数据量较少、预测模型拟合精度较低的问题,由此提供了一条普遍适用的建模思路。

关 键 词:数据驱动  ARIMA模型  毒情预测

Drug Situation Prediction Method Studies Based on Data Drive Modeling
Liu Yu-yan. Drug Situation Prediction Method Studies Based on Data Drive Modeling[J]. Yuannan Police Officer Academy, 2012, 0(4): 27-32
Authors:Liu Yu-yan
Affiliation:Liu Yu-yan,Yang Li-jun 1.The Department of Computer Science and Technology of Kunming University Yunnan Kunming; 2.Yunnan Police Officer Academy and Yunnan Provincial Key Laboratory of Criminal Science and Forensic Technology,Kunming,Yunnan
Abstract:Date drive modeling is a kind modeling method of not causal relationship,it aims at the fact that the traditional regressive model relies on the experience,involving the problems of subjective and blind factors,and it doesn’t need a theoretic model supported by theory(or hypothesis) in the modeling set stage,according to the analysis of the data structure,in the light of the change rule of data itself,in view of using extrapolating mechanism to describe the change of time series data,we can solve the problem that the data quantity is less,the forecasting model of the fitting accuracy is lower effectively,therefore this article offers a general applicable modeling thoughts.
Keywords:Data Drive  ARIMA Model  Drugs Forecasting
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号